Characterizing marine atmospheric boundary layer to support offshore wind energy research

被引:3
|
作者
Jiang, Houshuo [1 ]
Edson, James B. [1 ]
机构
[1] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA
来源
NAWEA WINDTECH 2019 | 2020年 / 1452卷
关键词
D O I
10.1088/1742-6596/1452/1/012027
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The marine atmospheric boundary layer (MABL), under most wind conditions, is characterized by lower shear, less turbulence, and higher winds than its terrestrial counterpart, thereby making offshore wind farms attractive enough to offset higher costs of construction and maintenance. Significant questions, however, remain about the structure and characteristics of the MABL and its impact on wind turbines. This work characterizes the structure of the MABL in the coastal region south of Martha's Vineyard where offshore wind turbines are planned to operate, using in situ and remotely sensed LIDAR measurements and numerical data generated by high resolution Weather Research and Forecasting (WRF) modeling. This work will benefit wind power estimates and short-term energy forecasting.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Characterizing the Atmospheric Boundary Layer for Offshore Wind Energy Using Synthetic Aperture Radar Imagery
    Stopa, Justin E.
    Vandemark, Doug
    Foster, Ralph
    Emond, Marc
    Mouche, Alexis
    Chapron, Bertrand
    [J]. WIND ENERGY, 2024,
  • [2] The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine
    Yang, Haoze
    Ge, Mingwei
    Gu, Bo
    Du, Bowen
    Liu, Yongqian
    [J]. ENERGY, 2022, 244
  • [3] The artificial generation of the equilibrium marine atmospheric boundary layer for the CFD simulation of offshore wind turbines
    Liu, Yichao
    Chen, Daoyi
    Li, Sunwei
    [J]. JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2018, 183 : 44 - 54
  • [4] Wind turning across the marine atmospheric boundary layer
    Brown, AR
    Beljaars, ACM
    Hersbach, H
    Hollingsworth, A
    Miller, M
    Vasiljevic, D
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (607) : 1233 - 1250
  • [5] Scientific challenges to characterizing the wind resource in themarine atmospheric boundary layer
    Shaw, William J.
    Berg, Larry K.
    Debnath, Mithu
    Deskos, Georgios
    Draxl, Caroline
    Ghate, Virendra P.
    Hasager, Charlotte B.
    Kotamarthi, Rao
    Mirocha, Jeffrey D.
    Muradyan, Paytsar
    Pringle, William J.
    Turner, David D.
    Wilczak, James M.
    [J]. WIND ENERGY SCIENCE, 2022, 7 (06) : 2307 - 2334
  • [6] Validation of boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model under the aspect of offshore wind energy applicationspart II: boundary layer height and atmospheric stability
    Krogsaeter, O.
    Reuder, J.
    [J]. WIND ENERGY, 2015, 18 (07) : 1291 - 1302
  • [7] Wave-driven wind jets in the marine atmospheric boundary layer
    Hanley, Kirsty E.
    Belcher, Stephen E.
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2008, 65 (08) : 2646 - 2660
  • [8] Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer
    Alfredo Peña
    Sven-Erik Gryning
    Charlotte B. Hasager
    [J]. Boundary-Layer Meteorology, 2008, 129 : 479 - 495
  • [9] Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer
    Pena, Alfredo
    Gryning, Sven-Erik
    Hasager, Charlotte B.
    [J]. BOUNDARY-LAYER METEOROLOGY, 2008, 129 (03) : 479 - 495
  • [10] On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the US northeastern coast
    Archer, Cristina L.
    Colle, Brian A.
    Veron, Dana L.
    Veron, Fabrice
    Sienkiewicz, Matthew J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (15) : 8869 - 8885