Dispersion diagrams of linear slow-wave structures. Identification of electromagnetic waves, all electromagnetic waves: forward-traveling, backward-traveling and standing electromagnetic waves

被引:0
|
作者
Andreev, Andrey D. [1 ]
Bi, Liangjie [2 ]
Schamiloglu, Edl [1 ]
机构
[1] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[2] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu, Peoples R China
关键词
Slow wave structures;
D O I
10.1080/09205071.2021.1978872
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The analytically calculated dispersion diagram of an overmoded 9-period V-band slow-wave structure (SWS) designed to operate in a high-order transverse-magnetic TM03 waveguide mode of a backward-traveling electromagnetic wave [Ye et al., Phys. Plasmas, 22, 063104 (2015)] is re-examined using the two-dimensional (2D) Poisson SuperFish code allowing to precisely calculate spatial patterns of electric field vectors, wavenumbers and characteristic frequencies of all azimuthally-symmetric TM0nl cavity modes that exist in a closed SWS, where n and l are the radial and axial indices of TM0nl cavity modes, respectively [Main et al., IEEE Trans. Plasma Sci., Vol. 22, No. 5, Oct. 1994, p. 566]. It is shown that the analytically calculated higher-order TM0n waveguide modes of the open SWS are actually not pure TM0n modes, but fascinating combinations of selected portions of the modes with selected portions of all possible lower-order TM0(n-j) waveguide modes, where j=1 horizontal ellipsis (n-1). An analytically calculated TM03 waveguide mode, therefore, turns out to be in fact a combination of three different TM0n waveguide modes sequentially identified by numerically calculated TM0nl cavity modes: (i) TM03l mode with l=0 horizontal ellipsis 4, (ii) TM01l mode with l=13 horizontal ellipsis 11, and (iii) TM02l mode with l=8 horizontal ellipsis 9.
引用
收藏
页码:655 / 668
页数:14
相关论文
共 15 条
  • [1] Traveling electromagnetic waves on linear periodic arrays of lossless penetrable spheres
    Shore, RA
    Yaghjian, AD
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2005, E88B (06) : 2346 - 2352
  • [2] An FE tool for the electromagnetic analysis of slow-wave helicoidal structures in traveling wave tubes
    Coco, Salvatore
    Laudani, Antonino
    Pollicino, Giuseppe
    Dionisio, Roberto
    Martorana, Rosario
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1793 - 1796
  • [3] REFLECTION OF ELECTROMAGNETIC WAVES FROM A PLASMA MOVING IN SLOW-WAVE GUIDES
    ZAGORODNOV, OG
    FAINBERG, YB
    EGOROV, AM
    SOVIET PHYSICS JETP-USSR, 1960, 11 (01): : 4 - 5
  • [4] Dispersion relation of azimuthal electromagnetic surface waves on a magnetized plasma column in a dielectric lined slow-wave waveguide
    Jazi, B
    Mehdian, H
    PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 (03) : 507 - 518
  • [5] ANALYSIS OF THE ELECTROMAGNETIC-WAVES IN AN OVERMODED FINITE-LENGTH SLOW-WAVE STRUCTURE
    AMIN, MR
    OGURA, K
    KITAMURA, H
    MINAMI, K
    WATANABE, T
    CARMEL, Y
    MAIN, W
    WEAVER, J
    DESTLER, WW
    GRANATSTEIN, VL
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1995, 43 (04) : 815 - 822
  • [7] Propagation of electromagnetic waves in non-linear and non-uniform dielectric structures.
    Kalinchenko, G
    Lerer, A
    ICTON 2000: 2ND INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, CONFERENCE PROCEEDINGS, 2000, : 63 - 66
  • [8] New method for calculating pulsed electromagnetic fields from traveling current waves in complex wire structures
    A. A. Potapov
    S. A. Podosenov
    J. Foukzon
    E. R. Men’kova
    Physics of Wave Phenomena, 2011, 19 : 112 - 123
  • [9] New method for calculating pulsed electromagnetic fields from traveling current waves in complex wire structures
    Potapov, A. A.
    Podosenov, S. A.
    Foukzon, J.
    Men'kova, E. R.
    PHYSICS OF WAVE PHENOMENA, 2011, 19 (02) : 112 - 123
  • [10] The forward-wave and backward-wave behaviors of electromagnetic waves in two-dimensional photonic crystals
    Jiang, Ping
    Yang, Huajun
    Xie, Kang
    OPTICA APPLICATA, 2014, 44 (01) : 17 - 27