Procedures of Parameters' estimation of AR(1) models into lineal state-space models

被引:0
|
作者
Noomene, Rouhia [1 ]
机构
[1] Univ Politecn Cataluna, Dept Stat & Operat Res, Barcelona, Spain
关键词
state space model; Kalman filer; maximum likelihood; BHHH; BFGS and EM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of this paper is to study how algorithms of optimization affect the parameters-estimation of Autoregressive AR(1)Models. In our research we have represented the AR(1) models in linear state space form and applied the Kalman Filters to estimate the different unknown parameters of the model. Many methods have been proposed by researchers for the estimation of the parameters in the case of the linear state space models. In our work we have emphasized on the estimation through the Maximum Likelihood (ML). Statisticians have used many algorithms to optimise the likelihood function and they have proposed many filters; publishing their results in many papers. In spite of the fact that this field is so extended, we have emphasized our study in the financial field. Two quasi-Newton algorithms: Berndt, Hall, Hall, and Hausman (BHHH) and Broyden-Fletcher-Goldfarb-Shanno (BFGS), and the Expectation-Maximization (EM) algorithm have been chosen for this study. A practical study of these algorithms applied to the maximization of likelihood by means of the Kalman Filter have been done. The results are focused on efficiency in time of computation and precision of the unknown parameters estimation. A simulation study has been carried out, using as true values the parameters of this model published in the literature, in order to test the efficiency and precision of our implemented algorithms.
引用
收藏
页码:995 / 999
页数:5
相关论文
共 50 条
  • [1] State-space estimation with uncertain models
    Sayed, AH
    Subramanian, A
    TOTAL LEAST SQUARES AND ERRORS-IN-VARIABLES MODELING: ANALYSIS, ALGORITHMS AND APPLICATIONS, 2002, : 191 - 202
  • [2] Estimation of Parameters of Gaussian Sum Distributed Noises in State-Space Models
    Dunik, Jindrich
    Kost, Oliver
    Straka, Ondrej
    IFAC PAPERSONLINE, 2020, 53 (02): : 2415 - 2422
  • [3] An algorithm for estimating parameters of state-space models
    Wu, LSY
    Pai, JS
    Hosking, JRM
    STATISTICS & PROBABILITY LETTERS, 1996, 28 (02) : 99 - 106
  • [4] A framework for state-space estimation with uncertain models
    Sayed, AH
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) : 998 - 1013
  • [6] Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models
    Cox, Benjamin
    Elvira, Victor
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1922 - 1937
  • [7] Estimation of unknown parameters in nonlinear and non-Gaussian state-space models
    Tanizaki, H
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 96 (02) : 301 - 323
  • [8] Estimation of state-space models with endogenous Markov regime-switching parameters
    Kang, Kyu H.
    ECONOMETRICS JOURNAL, 2014, 17 (01): : 56 - 82
  • [9] State estimation for nonlinear state-space transmission models of tuberculosis
    Strydom, Duayne
    le Roux, Johan Derik
    Craig, Ian Keith
    RISK ANALYSIS, 2023, 43 (02) : 339 - 357
  • [10] State Estimation for a Class of Piecewise Affine State-Space Models
    Rui, Rafael
    Ardeshiri, Tohid
    Nurminen, Henri
    Bazanella, Alexandre
    Gustafsson, Fredrik
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) : 61 - 65