Using data mining methods to build customer profiles

被引:103
|
作者
Adomavicius, G
Tuzhilin, A
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] NYU, Stern Sch Business, New York, NY USA
关键词
Algorithms - C (programming language) - Client server computer systems - Computer simulation - Data structures - Expert systems - Graphical user interfaces - [!text type='Java']Java[!/text] programming language - Knowledge acquisition - Knowledge representation - Relational database systems - UNIX;
D O I
10.1109/2.901170
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The 1:1 Pro system constructs personal profiles based on customers' transactional histories. The system uses data mining techniques to discover a set of rules describing customers' behavior and supports human experts in validating the rules.
引用
收藏
页码:74 / +
页数:10
相关论文
共 50 条
  • [1] Analysing Customer Profiles using Data Mining Techniques
    Filipova, Biljana Teohareva
    Martinovska, Cveta
    [J]. PROCEEDINGS OF THE ITI 2012 34TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES (ITI), 2012, : 73 - 78
  • [2] Customer churn prediction in telecommunication industry using data mining methods
    Meghyasi, Homa
    Rad, Abas
    [J]. REVISTA INNOVACIENCIA, 2020, 8 (01):
  • [3] Customer credit quality assessments using data mining methods for banking industries
    Huang, Shian-Chang
    Wu, Cheng-Feng
    [J]. AFRICAN JOURNAL OF BUSINESS MANAGEMENT, 2011, 5 (11): : 4438 - 4445
  • [4] Modelling Customer Churn Using Segmentation and Data Mining
    Hiziroglu, Abdulkadir
    Seymen, Omer Faruk
    [J]. DATABASES AND INFORMATION SYSTEMS VIII, 2014, 270 : 259 - 271
  • [5] A Development of Customer Segmentation by Using Data Mining Technique
    Jin, Seohoon
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2005, 18 (03) : 555 - 565
  • [6] Customer churn prediction using data mining approach
    Qaisi, Laila M.
    Rodan, Ali
    Qaddoum, Kefaya
    Al-Sayyed, Rizik
    [J]. 2018 FIFTH HCT INFORMATION TECHNOLOGY TRENDS (ITT): EMERGING TECHNOLOGIES FOR ARTIFICIAL INTELLIGENCE, 2018, : 348 - 352
  • [7] Using data mining to build integrated discrete event simulations
    Holland, David A.
    [J]. ADVANCES IN DATA MINING, PROCEEDINGS: MEDICAL APPLICATIONS, E-COMMERCE, MARKETING, AND THEORETICAL ASPECTS, 2008, 5077 : 323 - 329
  • [8] Data Mining for Predicting Customer Satisfaction Using Clustering Techniques
    Purwandari, Kartika
    Sigalingging, Join W. C.
    Fhadli, Muhammad
    Arizky, Shinta Nur
    Pardamean, Bens
    [J]. PROCEEDINGS OF 2020 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT AND TECHNOLOGY (ICIMTECH), 2020, : 223 - 227
  • [9] Predicting Telecommunication Customer Churn Using Data Mining Techniques
    AlOmari, Diana
    Hassan, Mohammad Mehedi
    [J]. INTERNET AND DISTRIBUTED COMPUTING SYSTEMS, IDCS 2016, 2016, 9864 : 167 - 178
  • [10] Using Data Mining Techniques to Detect Customer Default Payment
    Wang, Jun
    Liao, Anling
    Yan, Pu
    Wang, Wei
    Ye, Yingze
    [J]. 2021 ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE (ACCTCS 2021), 2021, : 85 - 88