Implicit weighted essentially nonoscillatory schemes for the compressible Navier-Stokes equations

被引:17
|
作者
Yang, JY [1 ]
Perng, YC
Yen, RH
机构
[1] Natl Taiwan Univ, Inst Appl Mech, Dept Mech Engn, Taipei 10764, Taiwan
[2] Chung Shan Inst Sci & Technol, Taoyuan 33509, Taiwan
关键词
D O I
10.2514/2.1231
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A class of lower-upper symmetric Gauss-Seidel implicit weighted essentially nonoscillatory (ENO) schemes for solving the two- and three-dimensional compressible Navier-Stokes equations with pointwise version of Baldwin-Barth one-equation turbulence model is presented (Baldwin, B. S., and Barth, T. J., "A One-Equation Turbulence Transport Model for High Reynolds Number Wall Bounded Flows," AIAA Paper 91-0610,1991). A weighted ENO (WENO) spatial operator is employed for inviscid fluxes and central differencing for viscous fluxes. A numerical flux of the WENO scheme in flux limiter form is adopted, which consists of first-order and high-order fluxes and allows for a more flexible choice of first-order dissipative methods. The computations are performed for the two-dimensional turbulent flows over NACA 0012 and Royal Aircraft Establishment 2822 airfoil and the three-dimensional turbulent flow over an ONERA M6 wing. The present solutions are compared with experimental data and other computational results and exhibit good agreement.
引用
收藏
页码:2082 / 2090
页数:9
相关论文
共 50 条
  • [1] Implicit weighted essentially non-oscillatory schemes for the incompressible Navier-Stokes equations
    Chen, YN
    Yang, SC
    Yang, JY
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 31 (04) : 747 - 765
  • [2] Boltzmann schemes for the compressible Navier-Stokes equations
    Ohwada, T
    [J]. RAREFIED GAS DYNAMICS, 2001, 585 : 321 - 328
  • [3] Bicompact Schemes for Compressible Navier-Stokes Equations
    Bragin, M. D.
    [J]. DOKLADY MATHEMATICS, 2023, 107 (01) : 12 - 16
  • [4] Implicit Weighted Essentially Nonoscillatory Schemes with Antidiffusive Flux for Compressible Viscous Flows
    Yang, Jaw-Yen
    Hsieh, Tsang-Jen
    Wang, Ching-Hua
    [J]. AIAA JOURNAL, 2009, 47 (06) : 1435 - 1444
  • [5] IMPLICIT UPWIND METHODS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    COAKLEY, TJ
    [J]. AIAA JOURNAL, 1985, 23 (03) : 374 - 380
  • [6] A STRONGLY IMPLICIT PROCEDURE FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    WALTERS, RW
    DWOYER, DL
    HASSAN, HA
    [J]. AIAA JOURNAL, 1986, 24 (01) : 6 - 12
  • [7] IMPLICIT FACTORED SCHEME FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS
    BEAM, RM
    WARMING, RF
    [J]. AIAA JOURNAL, 1978, 16 (04) : 393 - 402
  • [8] Discontinuous Galerkin schemes for the compressible Navier-Stokes equations
    Drozo, C
    Borrel, M
    Lerat, A
    [J]. SIXTEENTH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN FLUID DYNAMICS, 1998, 515 : 266 - 271
  • [9] Stable and accurate schemes for the compressible Navier-Stokes equations
    Mattsson, K.
    Svard, M.
    Shoeybi, M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (04) : 2293 - 2316
  • [10] Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: Laminar flow
    Bijl, H
    Carpenter, MH
    Vatsa, VN
    Kennedy, CA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 179 (01) : 313 - 329