Isotonic inverse estimators for nonparametric deconvolution

被引:0
|
作者
van Es, B
Jongbloed, G
van Zuijlen, M
机构
[1] Univ Amsterdam, Inst Math, NL-1018 TV Amsterdam, Netherlands
[2] Free Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
[3] Catholic Univ Nijmegen, Dept Math, NL-6525 ED Nijmegen, Netherlands
来源
ANNALS OF STATISTICS | 1998年 / 26卷 / 06期
关键词
convex minorant; cube root asymptotics; isotonic estimation; empirical process;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new nonparametric estimation procedure is introduced for the distribution function in a class of deconvolution problems, where the convolution density has one discontinuity. The estimator is shown to be consistent and its cube root asymptotic distribution theory is established. Known results on the minimax risk for the estimation problem indicate the estimator to be efficient.
引用
收藏
页码:2395 / 2406
页数:12
相关论文
共 50 条
  • [1] Nonparametric density deconvolution by weighted kernel estimators
    Hazelton, Martin L.
    Turlach, Berwin A.
    [J]. STATISTICS AND COMPUTING, 2009, 19 (03) : 217 - 228
  • [2] Nonparametric density deconvolution by weighted kernel estimators
    Martin L. Hazelton
    Berwin A. Turlach
    [J]. Statistics and Computing, 2009, 19 : 217 - 228
  • [3] On linearization of nonparametric deconvolution estimators for repeated measurements model
    Kurisu, Daisuke
    Otsu, Taisuke
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 189
  • [4] Simple kernel estimators for certain nonparametric deconvolution problems
    van Es, AJ
    Kok, AR
    [J]. STATISTICS & PROBABILITY LETTERS, 1998, 39 (02) : 151 - 160
  • [5] MAP estimators and their consistency in Bayesian nonparametric inverse problems
    Dashti, M.
    Law, K. J. H.
    Stuart, A. M.
    Voss, J.
    [J]. INVERSE PROBLEMS, 2013, 29 (09)
  • [6] Multi bandwidth kernel estimators for nonparametric deconvolution problems: Asymptotics and finite sample performance
    van Es, AJ
    Uh, HW
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2000, 13 (01) : 107 - 128
  • [7] Asymptotic normality of nonparametric kernel type deconvolution density estimators: Crossing the Cauchy boundary
    Van Es, AJ
    Uh, HW
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) : 261 - 277
  • [8] Nonparametric, isotonic discriminant procedures
    Dykstra, R
    Hewett, J
    Robertson, T
    [J]. BIOMETRIKA, 1999, 86 (02) : 429 - 438
  • [9] Nonparametric inverse-probability-weighted estimators based on the highly adaptive lasso
    Ertefaie, Ashkan
    Hejazi, Nima S.
    van der Laan, Mark J.
    [J]. BIOMETRICS, 2023, 79 (02) : 1029 - 1041
  • [10] M-estimators for isotonic regression
    Alvarez, Enrique E.
    Yohai, Victor J.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (08) : 2351 - 2368