Fast Fourier transform accelerated fast multipole algorithm

被引:48
|
作者
Elliott, WD
Board, JA
机构
[1] Duke University, Department of Electrical Engineering, Durham, NC 27706-0291
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1996年 / 17卷 / 02期
关键词
N-body problem; many-body problem; fast multipole algorithm; fast multipole method; tree codes; molecular dynamics; fast Fourier transform;
D O I
10.1137/S1064827594264259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes an O(p(2)log(2)(p)N) implementation of the fast multipole algorithm (FMA) for N-body simulations. This method of computing the FMA is faster than the original, which is O(p(4)N), where p is the number of terms retained in the truncated multipole expansion representation of the potential field of a collection of charged particles. The p term determines the accuracy of the calculation. The limiting O(p(4)) computation in the original FMA is a convolution-like operation on a matrix of multipole coefficients. This paper describes the implementation details of a conversion of this limiting computation to linear convolution, which is then computed in the Fourier domain using the fast Fourier transform (FFT), based on a method originally outlined by Greengard and Rokhlin. In addition, this paper describes a new block decomposition of the multipole expansion data that provides numerical stability and efficient computation. The resulting O(p(2)log(2)(p)) subroutine has a speedup of 2 on a sequential processor over the original method for p = 8, and a speedup of 4 for p = 16. The new subroutine vectorizes well and has a speedup of 3 on a vector processor at p = 8 and a speedup of 6 at p = 16.
引用
收藏
页码:398 / 415
页数:18
相关论文
共 50 条
  • [1] Graphics Processing Unit Accelerated Fast Multipole Method - Fast Fourier Transform
    Quang Nguyen
    Dang, Vinh
    Kilic, Ozlem
    2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2013, : 1882 - 1883
  • [2] Fast Fourier Transform Multilevel Fast Multipole Algorithm in Rough Ocean Surface Scattering
    Yang, Wei
    Zhao, Zhiqin
    Nie, Zaiping
    ELECTROMAGNETICS, 2009, 29 (07) : 541 - 552
  • [3] A fast Fourier transform on multipole algorithm for micromagnetic modeling of perpendicular recording media
    Liu, Z.J.
    Long, H.H.
    Ong, E.T.
    Li, E.P.
    Journal of Applied Physics, 2006, 99 (08):
  • [4] A fast Fourier transform on multipole algorithm for micromagnetic modeling of perpendicular recording media
    Liu, Z. J.
    Long, H. H.
    Ong, E. T.
    Li, E. P.
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
  • [5] Performing interpolation and anterpolation entirely by fast Fourier transform in the 3-D multilevel fast multipole algorithm
    Sarvas, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) : 2180 - 2196
  • [6] On a Fast Algorithm for Computing the Fourier Transform
    A. A. Aleksashkina
    A. N. Kostromin
    Yu. V. Nesterenko
    Moscow University Mathematics Bulletin, 2021, 76 : 123 - 128
  • [7] An improved fast Fourier transform algorithm
    Mieee, GB
    Chen, YQ
    ICICS - PROCEEDINGS OF 1997 INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING, VOLS 1-3: THEME: TRENDS IN INFORMATION SYSTEMS ENGINEERING AND WIRELESS MULTIMEDIA COMMUNICATIONS, 1997, : 1308 - 1310
  • [8] FAST-FOURIER-TRANSFORM ALGORITHM
    ROZENBLAT, MS
    SHVETSKII, BI
    AUTOMATION AND REMOTE CONTROL, 1975, 36 (04) : 648 - 656
  • [9] FAST FOURIER TRANSFORM ALGORITHM.
    Cabion, P.J.
    Transactions of the South African Institute of Electrical Engineers, 1980, 71 (pt 5): : 112 - 116
  • [10] On a Fast Algorithm for Computing the Fourier Transform
    Aleksashkina, A. A.
    Kostromin, A. N.
    Nesterenko, Yu, V
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2021, 76 (03) : 123 - 128