Heterogeneous precipitation strengthened non-equiatomic NiCoFeAlTi medium entropy alloy with excellent mechanical properties

被引:24
|
作者
Jia, Z. Y. [1 ]
Zhang, S. Z. [1 ]
Huo, J. T. [2 ]
Zhang, C. J. [1 ]
Zheng, L. W. [3 ]
Kong, F. T. [4 ]
Li, H. [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Key Lab Magnet Mat & Applicat Techn, Key Lab Magnet Mat & Devices, Ningbo 315201, Peoples R China
[3] Taiyuan Univ Technol, Instrumental Anal Ctr, Taiyuan 030024, Peoples R China
[4] Harbin Inst Technol, Coll Mat Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Medium entropy alloy; Heterogeneous precipitation; L1(2) phase; Precipitation strengthening; Mechanical properties; TENSILE PROPERTIES; AS-CAST; THERMAL-STABILITY; HALL-PETCH; DEFORMATION; EVOLUTION; BEHAVIOR;
D O I
10.1016/j.msea.2022.142617
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The outstanding strength-ductility combination has always been a challenging problem in the development of metal materials, high entropy alloys/medium entropy alloys (HEAs/MEAs) are considered to be the key material to solve this problem. Here a novel non-equiatomic Ni46Co24Fe24Al3Ti3 MEA with equiaxed grains was prepared by vacuum suspension melting, which consists of FCC matrix and heterogeneous L1(2) precipitate. In the current work, the different states of the Ni46Co24Fe24Al3Ti3 MEA from as-cast to after thermo-mechanical processing (TMP) were systematically researched. The result shows that the heterogeneous L1(2) precipitate of the as-cast alloy is composed of cubic precipitates at the grain boundary and spherical precipitates in the grain interior. After TMP, a short-rod L1(2) precipitated by discontinuous precipitation reaction (DP) at the grain boundary, and a spherical L1(2) precipitated by continuous precipitation reaction (CP) in the grain interior. Meanwhile, the alloy shows outstanding mechanical properties in the tensile test at room temperature. The ultimate tensile strength of the as-cast alloy is 935 MPa, with an elongation of 32%. The strength of the alloy is further improved after TMP, the yield strength and ultimate tensile strength are respectively 820 MPa and 1236 MPa, with an elongation of 23% retained. Compared with the single-phase NiCoFe MEA, the yield strength and ultimate tensile strength are significantly increased by 310% and 147%. The excellent mechanical properties of the alloy are attributed to the combination of the soft FCC matrix and the strengthening of the L1(2) precipitate.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Heterogeneous precipitates facilitate excellent mechanical properties in non-equiatomic medium-entropy alloy
    Lu, Wenjie
    Luo, Xian
    Yang, Yanqing
    Huang, Bin
    Li, Pengtao
    INTERMETALLICS, 2021, 129
  • [2] Nano-precipitates strengthened non-equiatomic medium-entropy alloy with outstanding tensile properties
    Lu, Wenjie
    Luo, Xian
    Yang, Yanqing
    Yan, Kang
    Huang, Bin
    Li, Pengtao
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 780 (780):
  • [3] A novel Fe-rich non-equiatomic medium-entropy alloy with superior mechanical properties
    Shivam, Vikas
    Kar, Shubhada
    Bansal, Gaurav K.
    Chandan, Avanish K.
    Sahoo, Biraj K.
    Mandal, G. K.
    Mukhopadhyay, N. K.
    Srivastava, V. C.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 952
  • [4] A novel Fe-rich non-equiatomic medium-entropy alloy with superior mechanical properties
    Shivam, Vikas
    Kar, Shubhada
    Bansal, Gaurav K.
    Chandan, Avanish K.
    Sahoo, Biraj K.
    Mandal, G.K.
    Mukhopadhyay, N.K.
    Srivastava, V.C.
    Journal of Alloys and Compounds, 2023, 952
  • [5] Grain Refinement of CoNiCrMo Non-equiatomic Medium Entropy Alloy
    M. Rezayat
    F. Najib
    Metals and Materials International, 2023, 29 : 235 - 246
  • [6] Grain Refinement of CoNiCrMo Non-equiatomic Medium Entropy Alloy
    Rezayat, M.
    Najib, F.
    METALS AND MATERIALS INTERNATIONAL, 2023, 29 (01) : 235 - 246
  • [7] Effects of aging treatment on microstructure and mechanical properties of non-equiatomic high entropy alloy
    Zhou, Z. C.
    Li, G. R.
    Wang, H. M.
    Zhou, P. J.
    Dong, K.
    Wei, Y. M.
    Zhang, Z. B.
    Dong, C.
    Su, W. X.
    Zhao, H.
    INTERMETALLICS, 2023, 153
  • [8] Manipulation of precipitation and mechanical properties of precipitation-strengthened medium-entropy alloy
    Lv, Jiwei
    Yu, Haoyang
    Fang, Wei
    Yin, Fuxing
    Wei, Daixiu
    SCRIPTA MATERIALIA, 2023, 222
  • [9] Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys
    Bae, Jae Wung
    Park, Jeong Min
    Moon, Jongun
    Choi, Won Mi
    Lee, Byeong-Joo
    Kim, Hyoung Seop
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 781 : 75 - 83
  • [10] Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys
    Yan, J. X.
    Zhang, Z. J.
    Zhang, P.
    Liu, J. H.
    Yu, H.
    Hu, Q. M.
    Yang, J. B.
    Zhang, Z. F.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 139 : 232 - 244