On the Uniqueness of Vortex Equations and Its Geometric Applications

被引:9
|
作者
Li, Qiongling [1 ,2 ]
机构
[1] Aarhus Univ, Ctr Quantum Geometry Moduli Spaces QGM, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
[2] CALTECH, Dept Math, 1200 East Calif Blvd, Pasadena, CA 91125 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
Vortex equations; Polynomial differentials; Harmonic maps; HARMONIC MAPS; CUBIC DIFFERENTIALS; CALABI CONJECTURE; SURFACE;
D O I
10.1007/s12220-018-9981-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the uniqueness of a vortex equation involving an entire function on the complex plane. As geometric applications, we show that there is a unique harmonic map u:CH2 satisfying u0 with prescribed polynomial Hopf differential; there is a unique affine spherical immersion u:CR3 with prescribed polynomial Pick differential. We also show that the uniqueness fails for non-polynomial entire functions with finitely many zeros.
引用
收藏
页码:105 / 120
页数:16
相关论文
共 50 条