Numerical simulation of moving contact line problems using a volume-of-fluid method

被引:240
|
作者
Renardy, M [1 ]
Renardy, Y
Li, J
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Cambridge, Bullard Labs, BP Inst, Cambridge CB3 0EZ, England
基金
美国国家科学基金会;
关键词
contact line; volume of fluid method;
D O I
10.1006/jcph.2001.6785
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Moving contact lines are implemented in a volume-of-fluid scheme with piecewise linear interface construction. Interfacial tension is treated as a continuous body force, computed from numerical derivatives of a smoothed volume-of-fluid function. Two methods for implementing the contact angle condition are investigated. The first extrapolates the volume-of-fluid function beyond the flow domain, on the basis of the condition that its gradient is perpendicular to the interface and that the normal to the interface at the wall is determined by the contact angle. The second method treats the problem as a three-phase situation and mimics the classical argument of Young. It is found that the latter approach introduces an artificial localized flow, and the extrapolation method is preferable. Slip is a crucial factor in the spreading of contact lines; the numerical method introduces slip at the discrete level, effectively introducing a slip length on the order of the mesh size. (C) 2001 Academic Press.
引用
收藏
页码:243 / 263
页数:21
相关论文
共 50 条
  • [1] Numerical simulation of moving free surface problems in polymer processing using volume-of-fluid method
    Kim, JM
    Ahn, KH
    Lee, SJ
    Lee, SJ
    [J]. POLYMER ENGINEERING AND SCIENCE, 2001, 41 (05): : 858 - 866
  • [2] Contact line advection using the geometrical Volume-of-Fluid method
    Fricke, Mathis
    Maric, Tomislav
    Bothe, Dieter
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407
  • [3] Numerical simulation of multiphase flows using an enhanced Volume-of-Fluid (VOF) method
    Garoosi, Faroogh
    Hooman, Kamel
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 215
  • [4] Numerical simulation of the disintegration of forced liquid jets using volume-of-fluid method
    Srinivasan, Vedanth
    Salazar, Abraham J.
    Saito, Kozo
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2010, 24 (08) : 317 - 333
  • [5] A Volume-of-Fluid based simulation method for wave impact problems
    Kleefsman, KMT
    Fekken, G
    Veldman, AEP
    Iwanowski, B
    Buchner, B
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (01) : 363 - 393
  • [6] Direct numerical simulation of variable surface tension flows using a Volume-of-Fluid method
    Seric, Ivana
    Afkhami, Shahriar
    Kondic, Lou
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 352 : 615 - 636
  • [7] Numerical simulation of free jet formation and breakdown by the Volume-of-Fluid method
    Goldschmidtböing, F
    Woias, P
    [J]. MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS, 2003, 4982 : 272 - 281
  • [8] PARALLEL SIMULATION OF MULTIPHASE FLOWS USING THE VOLUME-OF-FLUID METHOD
    Fuster, Daniel
    Hoepffner, Jerome
    Popinet, Stephane
    Zaleski, Stephane
    [J]. PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE 2011, VOL 1, PTS A-D, 2012, : 4029 - 4035
  • [9] Simulation of Condensation of Stagnant or Moving Saturated Vapor on a Horizontal Tube Using the Volume-of-Fluid (VOF) Method
    Minko, K. B.
    Artemov, V. I.
    Klement'ev, A. A.
    [J]. THERMAL ENGINEERING, 2023, 70 (03) : 175 - 193
  • [10] Simulation of Condensation of Stagnant or Moving Saturated Vapor on a Horizontal Tube Using the Volume-of-Fluid (VOF) Method
    K. B. Minko
    V. I. Artemov
    A. A. Klement’ev
    [J]. Thermal Engineering, 2023, 70 : 175 - 193