Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover

被引:133
|
作者
Goldblatt, Ran [1 ]
Stuhlmacher, Michelle F. [2 ]
Tellman, Beth [2 ]
Clinton, Nicholas [3 ]
Hanson, Gordon [1 ]
Georgescu, Matei [2 ]
Wang, Chuyuan [2 ]
Serrano-Candela, Fidel [4 ]
Khandelwal, Amit K. [5 ]
Cheng, Wan-Hwa [2 ]
Balling, Robert C., Jr. [2 ]
机构
[1] Univ Calif San Diego, Sch Global Policy & Strategy, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Arizona State Univ, Sch Geog Sci & Urban Planning, 976 S Forest Mall, Tempe, AZ 85281 USA
[3] Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
[4] Univ Nacl Autonoma Mexico, Lab Nacl Ciencias Sostenibilidad, Apartado Postal 70-275 Ciudad Univ, Mexico City, DF, Mexico
[5] Columbia Univ, Columbia Business Sch, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Urbanization; Built-up land cover; Nighttime light; Image classification; Google Earth Engine; DIFFERENCE WATER INDEX; BUILT-UP INDEX; TIME-SERIES; HEAT-ISLAND; AREAS; CHINA; URBANIZATION; MAP; SETTLEMENTS; EXTENTS;
D O I
10.1016/j.rse.2017.11.026
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30 m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time.
引用
收藏
页码:253 / 275
页数:23
相关论文
共 50 条
  • [1] Land Cover Analysis by Using Pixel-Based and Object-Based Image Classification Method in Bogor
    Amalisana, Birohmatin
    Rokhmatullah
    Hernina, Revi
    [J]. 5TH GEOINFORMATION SCIENCE SYMPOSIUM 2017 (GSS 2017), 2017, 98
  • [2] PIXEL-BASED CLASSIFICATION ANALYSIS OF LAND USE LAND COVER USING SENTINEL-2 AND LANDSAT-8 DATA
    Sekertekin, A.
    Marangoz, A. M.
    Akcin, H.
    [J]. 4TH INTERNATIONAL GEOADVANCES WORKSHOP - GEOADVANCES 2017: ISPRS WORKSHOP ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2017, 42-4 (W6): : 91 - 93
  • [3] A Combined Object- and Pixel-Based Image Analysis Framework for Urban Land Cover Classification of VHR Imagery
    Salehi, Bahram
    Zhang, Yun
    Zhong, Ming
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2013, 79 (11): : 999 - 1014
  • [4] Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping
    Griffiths, Patrick
    van der Linden, Sebastian
    Kuemmerle, Tobias
    Hostert, Patrick
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (05) : 2088 - 2101
  • [5] Improving pixel-based VHR land-cover classifications of urban areas with post-classification techniques
    Van de Voorde, Tim
    De Genst, William
    Canters, Frank
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2007, 73 (09): : 1017 - 1027
  • [6] Comparison of segment and pixel-based non-parametric land cover classification in the Brazilian Amazon using multitemporal landsat TM/ETM+ imagery
    Budreski, Katherine A.
    Wynne, Randolph H.
    Browder, John O.
    Campbell, James B.
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2007, 73 (07): : 813 - 827
  • [7] Comparison of pixel-based and object-based classification methods in detecting land use/land cover dynamics
    Kesgin, B.
    Esbah, H.
    Kurucu, Y.
    [J]. REMOTE SENSING FOR A CHANGING EUROPE, 2009, : 173 - 179
  • [8] A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research
    Khatami, Reza
    Mountrakis, Giorgos
    Stehman, Stephen V.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 177 : 89 - 100
  • [9] Comparing Three Spaceborne Optical Sensors via Fine Scale Pixel-based Urban Land Cover Classification Products
    Breytenbach, Andre
    Eloff, Corne
    Pretorius, Erika
    [J]. SOUTH AFRICAN JOURNAL OF GEOMATICS, 2013, 2 (04): : 309 - 324
  • [10] Texture and pixel-based satellite image classification using cellular automata
    Bindhu, J. S.
    Pramod, K., V
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (07) : 9913 - 9937