Triangle inequalities in path metric spaces

被引:3
|
作者
Kapovich, Michael [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
来源
GEOMETRY & TOPOLOGY | 2007年 / 11卷
关键词
D O I
10.2140/gt.2007.11.1653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study side-lengths of triangles in path metric spaces. We prove that unless such a space X is bounded, or quasi-isometric to R+ or to R, every triple of real numbers satisfying the strict triangle inequalities, is realized by the side-lengths of a triangle in X. We construct an example of a complete path metric space quasi-isometric to R-2 for which every degenerate triangle has one side which is shorter than a certain uniform constant.
引用
收藏
页码:1653 / 1680
页数:28
相关论文
共 50 条
  • [1] On the triangle inequalities in fuzzy metric spaces
    Huang, Huan
    Wu, Congxin
    [J]. INFORMATION SCIENCES, 2007, 177 (04) : 1063 - 1072
  • [2] Pre-Metric Spaces Along with Different Types of Triangle Inequalities
    Wu, Hsien-Chung
    [J]. AXIOMS, 2018, 7 (02):
  • [3] On sharp triangle inequalities in Banach spaces
    Mitani, Ken-Ichi
    Saito, Kichi-Suke
    Kato, Mikio
    Tamura, Takayuki
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 1178 - 1186
  • [4] Inequalities in metric spaces with applications
    Khamsi, M. A.
    Khan, A. R.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (12) : 4036 - 4045
  • [5] On Sharp Triangle Inequalities in Banach Spaces II
    Mitani, Ken-Ichi
    Saito, Kichi-Suke
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [6] PROPERTIES OF DISTANCE SPACES WITH POWER TRIANGLE INEQUALITIES
    Greenhoe, D. J.
    [J]. CARPATHIAN MATHEMATICAL PUBLICATIONS, 2016, 8 (01) : 51 - 82
  • [7] On Sharp Triangle Inequalities in Banach Spaces II
    Ken-Ichi Mitani
    Kichi-Suke Saito
    [J]. Journal of Inequalities and Applications, 2010
  • [8] Coercive inequalities on metric measure spaces
    Hebisch, W.
    Zegarlinski, B.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (03) : 814 - 851
  • [9] Hardy inequalities on metric measure spaces
    Ruzhansky, Michael
    Verma, Daulti
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2223):
  • [10] Characterizations of Sobolev inequalities on metric spaces
    Kinnunen, Juha
    Korte, Riikka
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 1093 - 1104