Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes

被引:365
|
作者
Jia, Haiping [1 ]
Li, Xiaolin [1 ]
Song, Junhua [1 ]
Zhang, Xin [2 ]
Luo, Langli [3 ]
He, Yang [3 ]
Li, Binsong [4 ]
Cai, Yun [5 ]
Hu, Shenyang [5 ]
Xiao, Xingcheng [4 ]
Wang, Chongmin [3 ]
Rosso, Kevin M. [2 ]
Yi, Ran [1 ]
Patel, Rajankumar [1 ]
Zhang, Ji-Guang [1 ]
机构
[1] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[2] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA
[3] Pacific Northwest Natl Lab, Environm Mol Sci Lab, 3335 Innovat Blvd, Richland, WA 99354 USA
[4] Gen Motors Res & Dev Ctr, 30500 Mound Rd, Warren, MI 48090 USA
[5] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA
关键词
CARBON NANOTUBES; DESIGN; ELECTRODES; STORAGE; STABILITY; EXPANSION; GRAPHITE; CATHODE; BINDER; SIZE;
D O I
10.1038/s41467-020-15217-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Porous structured silicon has been regarded as a promising candidate to overcome pulverization of silicon-based anodes. However, poor mechanical strength of these porous particles has limited their volumetric energy density towards practical applications. Here we design and synthesize hierarchical carbon-nanotube@silicon@carbon microspheres with both high porosity and extraordinary mechanical strength (>200MPa) and a low apparent particle expansion of 40% upon full lithiation. The composite electrodes of carbon-nanotube@silicon@carbon-graphite with a practical loading (3mAhcm(-2)) deliver 750mAhg(-1) specific capacity, <20% initial swelling at 100% state-of-charge, and 92% capacity retention over 500 cycles. Calendered electrodes achieve 980mAhcm(-3) volumetric capacity density and <50% end-of-life swell after 120 cycles. Full cells with LiNi1/3Mn1/3Co1/3O2 cathodes demonstrate >92% capacity retention over 500 cycles. This work is a leap in silicon anode development and provides insights into the design of electrode materials for other batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes
    Haiping Jia
    Xiaolin Li
    Junhua Song
    Xin Zhang
    Langli Luo
    Yang He
    Binsong Li
    Yun Cai
    Shenyang Hu
    Xingcheng Xiao
    Chongmin Wang
    Kevin M. Rosso
    Ran Yi
    Rajankumar Patel
    Ji-Guang Zhang
    Nature Communications, 11
  • [2] Mechanochemical reduction of clay minerals to porous silicon nanoflakes for high-performance lithium-ion battery anodes
    Chen, Qingze
    Wei, Shoushu
    Zhu, Runliang
    Du, Jing
    Xie, Jieyang
    Huang, Haiming
    Zhu, Jianxi
    Guo, Zhengxiao
    CHEMICAL COMMUNICATIONS, 2023, 59 (96) : 14297 - 14300
  • [3] Porous silicon/carbon composites as anodes for high-performance lithium-ion batteries
    Tian, Zhen-Yu
    Wang, Ya-Fei
    Qin, Xin
    Shaislamov, Ulugbek
    Hojamberdiev, Mirabbos
    Zheng, Tong-Hui
    Dong, Shuo
    Zhang, Xing-Hao
    Kong, De-Bin
    Zhi, Lin-Jie
    Xinxing Tan Cailiao/New Carbon Materials, 2024, 39 (05): : 992 - 1002
  • [4] Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes
    Zhang, Chaofan
    Ma, Qiang
    Cai, Muya
    Zhao, Zhuqing
    Xie, Hongwei
    Ning, Zhiqiang
    Wang, Dihua
    Yin, Huayi
    WASTE MANAGEMENT, 2021, 135 : 182 - 189
  • [5] Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes
    Zhang, Chaofan
    Ma, Qiang
    Cai, Muya
    Zhao, Zhuqing
    Xie, Hongwei
    Ning, Zhiqiang
    Wang, Dihua
    Yin, Huayi
    Waste Management, 2021, 135 : 182 - 189
  • [6] Hierarchical porous SnO2/reduced graphene oxide composites for high-performance lithium-ion battery anodes
    Chen, Lechen
    Ma, Xiaohang
    Wang, Mozhen
    Chen, Chunhua
    Ge, Xuewu
    ELECTROCHIMICA ACTA, 2016, 215 : 42 - 49
  • [7] Microgel-assisted assembly of hierarchical porous reduced graphene oxide for high-performance lithium-ion battery anodes
    Wang, Huan
    Xie, Jingyi
    Almkhelfe, Haider
    Zane, Victoria
    Ebini, Raiya
    Sorensen, Christopher M.
    Amama, Placidus B.
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (44) : 23228 - 23237
  • [8] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678
  • [9] Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes
    Weili An
    Biao Gao
    Shixiong Mei
    Ben Xiang
    Jijiang Fu
    Lei Wang
    Qiaobao Zhang
    Paul K. Chu
    Kaifu Huo
    Nature Communications, 10
  • [10] Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes
    Zhao, Tianting
    Zhu, Delun
    Li, Wenrong
    Li, Aijun
    Zhang, Jiujun
    JOURNAL OF POWER SOURCES, 2019, 439