Structure and Randomness of Continuous-Time, Discrete-Event Processes

被引:22
|
作者
Marzen, Sarah E. [1 ,2 ]
Crutchfield, James P. [3 ]
机构
[1] MIT, Dept Phys, Phys Living Syst Grp, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Davis, Dept Phys, Complex Sci Ctr, One Shields Ave, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Epsilon-machines; Causal states; Entropy rate; Statistical complexity; Hidden Markov processes; COMPLEXITY; ORDER;
D O I
10.1007/s10955-017-1859-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process' intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models-memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (-machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.
引用
收藏
页码:303 / 315
页数:13
相关论文
共 50 条
  • [1] Structure and Randomness of Continuous-Time, Discrete-Event Processes
    Sarah E. Marzen
    James P. Crutchfield
    Journal of Statistical Physics, 2017, 169 : 303 - 315
  • [2] Specification of combined continuous-time discrete-event models
    van Beek, DA
    Rooda, JE
    van den Muyzenberg, M
    MODELLING AND SIMULATION 1996, 1996, : 219 - 224
  • [3] Inference, Prediction, & Entropy-Rate Estimation of Continuous-Time, Discrete-Event Processes
    Marzen, Sarah E.
    Crutchfield, James P.
    ENTROPY, 2022, 24 (11)
  • [4] Supervisory control for continuous-time discrete-event systems and its observability
    Wang, Fei
    Luo, Ji-Liang
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2010, 27 (12): : 1731 - 1736
  • [5] A combined continuous-time/discrete-event computation model for heterogeneous simulation systems
    Franck, A
    Zerbe, V
    ADVANCED PARALLEL PROCESSING TECHNOLOGIES, PROCEEDINGS, 2003, 2834 : 565 - 576
  • [6] Discrete-Event/Continuous-Time Simulation of Distributed Data Communication and Control Systems
    Ray, Asok
    Hong, Seung Ho
    Lee, Suk
    Egbelu, Pius J.
    Transactions of the Society for Computer Simulation, 1988, 5 (01): : 71 - 85
  • [7] Continuous time discounted jump Markov decision processes: A discrete-event approach
    Feinberg, EA
    MATHEMATICS OF OPERATIONS RESEARCH, 2004, 29 (03) : 492 - 524
  • [8] ON STABILIZATION OF DISCRETE-EVENT PROCESSES
    BRAVE, Y
    HEYMANN, M
    PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 2737 - 2742
  • [9] STABILIZATION OF DISCRETE-EVENT PROCESSES
    BRAVE, Y
    HEYMANN, M
    INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (05) : 1101 - 1117
  • [10] Discrete-event simulation of continuous-time systems: evolution and state of the art of quantized state system methods
    Castro, Rodrigo
    Bergonzi, Mariana
    Marcosig, Ezequiel Pecker
    Fernandez, Joaquin
    Kofman, Ernesto
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2024, 100 (06): : 613 - 638