Deep Modeling of the Evolution of User Preferences and Item Attributes in Dynamic Social Networks

被引:6
|
作者
Wu, Peizhi [1 ]
Tu, Yi [2 ]
Yang, Zhenglu [1 ]
Jatowt, Adam [3 ]
Odagaki, Masato [4 ]
机构
[1] Nankai Univ, CCCE, Tianjin, Peoples R China
[2] George Washington Univ, Washington, DC USA
[3] Kyoto Univ, Kyoto, Japan
[4] Maebashi Inst Technol, Maebashi, Gumma, Japan
来源
COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018) | 2018年
基金
中国国家自然科学基金;
关键词
user modeling; social networks; MLP; RNN;
D O I
10.1145/3184558.3186956
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modeling the evolution of user preferences and item attributes in a dynamic social network is important because it is the basis for many applications, including recommendation systems and user behavior analysis. This study introduces a comprehensive general neural framework with several optimal strategies to jointly model the evolution of user preferences and item attributes in dynamic social networks. Preliminary experimental results conducted on real-world datasets demonstrate that our model performs better than the state-of-the-art methods.
引用
收藏
页码:115 / 116
页数:2
相关论文
共 50 条
  • [1] Modeling and predicting user preferences with multiple item attributes for sequential recommendations
    Xu, Li
    Zeng, Jun
    Peng, Weile
    Wu, Hao
    Yue, Kun
    Ding, Haiyan
    Zhang, Lei
    Wang, Xin
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [2] User Modeling on Demographic Attributes in Big Mobile Social Networks
    Dong, Yuxiao
    Chawla, Nitesh V.
    Tang, Jie
    Yang, Yang
    Yang, Yang
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2017, 35 (04)
  • [3] Neural Framework for Joint Evolution Modeling of User Feedback and Social Links in Dynamic Social Networks
    Wu, Peizhi
    Tu, Yi
    Yuan, Xiaojie
    Jatowt, Adam
    Yang, Zhenglu
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1632 - 1638
  • [4] Implicit User Trust Modeling Based on User Attributes and Behavior in Online Social Networks
    Khan, Jebran
    Lee, Sungchang
    IEEE ACCESS, 2019, 7 : 142826 - 142842
  • [5] Research on the dynamic latent factor model combining attributes of user and item
    Lin, Renjun
    Wang, Wenming
    2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (IEEE ICIA 2017), 2017, : 1082 - 1087
  • [6] Deep Learning-based Dynamic User Alignment in Social Networks
    Matrouk, Khaled
    Srikanth, V
    Kumar, Sumit
    Bhadla, Mohit Kumar
    Sabirov, Mirza
    Saadh, Mohamed J.
    ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2023, 15 (03):
  • [7] Modeling Bimodal Social Networks Subject to the Recommendation with the Cold Start User-Item Model
    Klopotek, Robert Albert
    COMPUTERS, 2020, 9 (01)
  • [8] CAPTURING USER'S PREFERENCES USING A GENETIC ALGORITHM Determining Essential and Dispensable Item Attributes
    Valero, S.
    Argente, E.
    Botti, V.
    ICAART 2010: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1: ARTIFICIAL INTELLIGENCE, 2010, : 599 - 602
  • [9] Deep Generative Networks Coupled With Evidential Reasoning for Dynamic User Preferences Using Short Texts
    Vo, Duc-Vinh
    Tran, Trung-Tin
    Shirai, Kiyoaki
    Huynh, Van-Nam
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (07) : 6811 - 6826
  • [10] DPRec: Social Recommendation Based on Dynamic User Preferences
    Hu, Haibo
    Yang, Dan
    Zhang, Yu
    IAENG International Journal of Computer Science, 2023, 50 (03)