Monotonicity-constrained nonparametric estimation and inference for first-price auctions

被引:3
|
作者
Ma, Jun [1 ]
Marmer, Vadim [2 ]
Shneyerov, Artyom [3 ]
Xu, Pai [4 ]
机构
[1] Renmin Univ China, Sch Econ, 59 Zhongguancun St, Beijing 100872, Peoples R China
[2] Univ British Columbia, Vancouver Sch Econ, Vancouver, BC, Canada
[3] Concordia Univ, Dept Econ, Montreal, PQ, Canada
[4] Univ Hong Kong, HKU Business Sch, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic normality; bootstrap; firstprice auctions; monotonicity; nonparametric estimation; uniform confidence band; KERNEL REGRESSION; IDENTIFICATION; DISCONTINUITY; SELECTION; VARIANCE; SUPREMA; ENTRY;
D O I
10.1080/07474938.2021.1889198
中图分类号
F [经济];
学科分类号
02 ;
摘要
In the independent private values framework for first-price auctions, we propose a new nonparametric estimator of the probability density of latent valuations that imposes the monotonicity constraint on the estimated inverse bidding strategy. We show that our estimator has a smaller asymptotic variance than that of Guerre, Perrigne and Vuong's estimator. In addition to establishing pointwise asymptotic normality of our estimator, we provide a bootstrap-based approach to constructing uniform confidence bands for the density function.
引用
收藏
页码:944 / 982
页数:39
相关论文
共 50 条