ecp: An R Package for Nonparametric Multiple Change Point Analysis of Multivariate Data

被引:0
|
作者
James, Nicholas A. [1 ]
Matteson, David S. [2 ]
机构
[1] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2014年 / 62卷 / 07期
关键词
cluster analysis; multivariate time series; siganal processing;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
There are many different ways in which change point analysis can be performed, from purely parametric methods to those that are distribution free. The ecp package is designed to perform multiple change point analysis while making as few assumptions as possible. While many other change point methods are applicable only for univariate data, this R package is suitable for both univariate and multivariate observations. Hierarchical estimation can be based upon either a divisive or agglomerative algorithm. Divisive estimation sequentially identifiers change points via a bisection algorithm. The agglomerative algorithm estimates change point location by determining an optimal segmentation. Both apporaches are able to detect any type of distributional change within the data. This provides an advantage over many existing change point algorithm which are only able to detect changes within the marginal distributions.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [1] A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data
    Matteson, David S.
    James, Nicholas A.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 334 - 345
  • [2] Nonparametric Inference for Multivariate Data: The R Package npmv
    Ellis, Amanda R.
    Burchett, Woodrow W.
    Harrar, Solomon W.
    Bathke, Arne C.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (04): : 1 - 18
  • [3] An R package for the forward analysis of multivariate data
    Corbellini, Aldo
    Konis, Kjell
    [J]. DATA ANALYSIS, CLASSIFICATION AND THE FORWARD SEARCH, 2006, : 189 - 197
  • [4] MGLM: An R Package for Multivariate Categorical Data Analysis
    Kim, Juhyun
    Zhang, Yiwen
    Day, Joshua
    Zhou, Hua
    [J]. R JOURNAL, 2018, 10 (01): : 73 - 90
  • [5] Multivariate analysis of mixed data. The R Package PCAmixdata
    Chavent, Marie
    Kuentz, Vanessa
    Labenne, Amaury
    Saracco, Jerome
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 606 - 645
  • [6] Optimal Nonparametric Multivariate Change Point Detection and Localization
    Padilla, Oscar Hernan Madrid
    Yu, Yi
    Wang, Daren
    Rinaldo, Alessandro
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (03) : 1922 - 1944
  • [7] FactoMineR: An R package for multivariate analysis
    Le, Sebastien
    Josse, Julie
    Husson, Francois
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2008, 25 (01): : 1 - 18
  • [8] nparLD: An R Software Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments
    Noguchi, Kimihiro
    Gel, Yulia R.
    Brunner, Edgar
    Konietschke, Frank
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (12): : 1 - 23
  • [9] rbrothers: R Package for Bayesian Multiple Change-Point Recombination Detection
    Irvahn, Jan
    Chattopadhyay, Sujay
    Sokurenko, Evgeni V.
    Minin, Vladimir N.
    [J]. EVOLUTIONARY BIOINFORMATICS, 2013, 9 : 235 - 238
  • [10] An R Package for performing kernel change point detection on the running statistics of multivariate time series
    Cabrieto, Jedelyn
    Meers, Kristof
    Schat, Evelien
    Adolf, Janne
    Kuppens, Peter
    Tuerlinckx, Francis
    Ceulemans, Eva
    [J]. BEHAVIOR RESEARCH METHODS, 2022, 54 (03) : 1092 - 1113