Dielectric response of one-dimensional polar chains

被引:7
|
作者
Matyushov, Dmitry V. [1 ]
机构
[1] Arizona State Univ, Ctr Biol Phys, Tempe, AZ 85287 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2007年 / 127卷 / 05期
关键词
D O I
10.1063/1.2756841
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a theory for the dielectric constant of materials made of parallel infinite one-dimensional chains of dipoles. Each dipole is allowed to rotate in three dimensions. Monte Carlo simulations show that the Kirkwood factor of the chain grows with increasing dipole moment much faster than in the case of three-dimensional polar fluids. With increasing dipole moment or cooling the one-dimensional chain undergoes a continuous order-disorder transition to the ferroelectric phase, in which the dielectric constant is limited by the size of ferroelectric domains along the chain.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Heat Conduction in One-Dimensional Dielectric Chains
    Li, Jin-Xing
    Liu, Fei
    Ye, Qin
    CHINESE JOURNAL OF PHYSICS, 2009, 47 (06) : 885 - 892
  • [2] DIELECTRIC RESPONSE OF A ONE-DIMENSIONAL ELECTRON-GAS
    FRIESEN, WI
    BERGERSEN, B
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1980, 13 (36): : 6627 - 6640
  • [3] DIELECTRIC RESPONSE OF ONE-DIMENSIONAL SEMICONDUCTOR QUANTUM WIRES
    LAI, WY
    DASSARMA, S
    SURFACE SCIENCE, 1986, 170 (1-2) : 43 - 48
  • [4] Heat conduction in one-dimensional chains
    Hu, BB
    Li, BW
    Zhao, H
    PHYSICAL REVIEW E, 1998, 57 (03): : 2992 - 2995
  • [5] One-dimensional analysis on the dynamic response of cellular chains to pulse loading
    Gao, Z. Y.
    Yu, T. X.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2006, 220 (05) : 679 - 689
  • [6] SOLITONS IN ONE-DIMENSIONAL MOLECULAR CHAINS
    DAVYDOV, AS
    KISLUKHA, NI
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1976, 75 (02): : 735 - 742
  • [7] SOLITONS IN ONE-DIMENSIONAL ANTIFERROMAGNETIC CHAINS
    PIRES, AST
    TALIM, SL
    COSTA, BV
    PHYSICAL REVIEW B, 1989, 39 (10): : 7149 - 7156
  • [8] DECAY TIMES IN ONE-DIMENSIONAL CHAINS
    VANDENBROECK, C
    BOUTEN, M
    JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (5-6) : 1031 - 1047
  • [9] One-dimensional chains of metal atoms
    Schmidt, K
    Springborg, M
    SOLID STATE COMMUNICATIONS, 1997, 104 (07) : 413 - 417
  • [10] Collision of one-dimensional nonlinear chains
    Nagahiro, S
    Hayakawa, Y
    PHYSICAL REVIEW E, 2003, 67 (03)