Effect of acidic degradation products of poly(lactic-co-glycolic)acid on the apatite-forming ability of poly(lactic-co-glycolic)acid-siloxane nanohybrid material

被引:18
|
作者
Rhee, Sang-Hoon [1 ]
Lee, Seung Jin
机构
[1] Seoul Natl Univ, Sch Dent, Dept Dent Biomat Sci, Seoul 110749, South Korea
[2] Seoul Natl Univ, Sch Dent, Dent Res Inst, Seoul 110749, South Korea
[3] Ewha Womans Univ, Coll Pharm, Seoul 120750, South Korea
关键词
poly(lactic-co-glycolic acid); degradation product; acidity; apatite; dissolution;
D O I
10.1002/jbm.a.31405
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The effect of poly(lactic-co-glycolic) acid (PLGA) degradation products on the apatite-forming ability of a PLGA-siloxane nanohybrid material were investigated. Two PLGA copolymer compositions with low and high degradability were used in the experiment. The PLGA-siloxane nanohybrid materials were synthesized by end-capping PLGA with acid end-groups using 3-isocyanatopropyl triethoxysilane following the sol-gel reaction with calcium nitrate tetrahydrate. Two nanohybrid materials that had different degradability were exposed to simulated body fluid (SBF) for 1-28 days at 36.5 degrees C. The low degradable PLGA hybrid showed apatite-forming ability within 3 days of incubation while the high degradable one did not within 28 days testing period. The results were explained in terms of the acidity of the PLGA degradation products, which could directly influence on the apatite dissolution. (C) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:799 / 805
页数:7
相关论文
共 50 条
  • [1] Experimental Comparative Study of the Histotoxicity of Poly(Lactic-co-Glycolic Acid) copolymer and Poly(Lactic-co-Glycolic Acid)-Poly(Isoprene) Blend
    Kim, Jung Ho
    Marques, Douglas Ramos
    Faller, Gustavo Juliani
    Collares, Marcus Vinicius
    Rodriguez, Rubens
    dos Santos, Luis Alberto
    Dias, Diego da Silva
    POLIMEROS-CIENCIA E TECNOLOGIA, 2014, 24 (05): : 529 - 535
  • [2] Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research
    Lu, Yue
    Cheng, Dongfang
    Niu, Baohua
    Wang, Xiuzhi
    Wu, Xiaxia
    Wang, Aiping
    PHARMACEUTICALS, 2023, 16 (03)
  • [3] Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro
    Li, Jian
    Nemes, Peter
    Guo, Ji
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2018, 106 (03) : 1129 - 1137
  • [4] Sequenced poly(lactic-co-glycolic acid) copolymers
    Meyer, Tara Y.
    Weiss, Ryan M.
    Washington, Michael A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [5] Poly(lactic-co-glycolic acid) as a particulate emulsifier
    Whitby, Catherine P.
    Lim, Li Hui
    Eskandar, Nasrin Ghouchi
    Simovic, Spomenka
    Prestidge, Clive A.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 375 : 142 - 147
  • [6] Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview
    Blasi P.
    Journal of Pharmaceutical Investigation, 2019, 49 (4) : 337 - 346
  • [7] Longitudinal acoustic properties of poly(lactic acid) and poly(lactic-co-glycolic acid)
    Parker, N. G.
    Mather, M. L.
    Morgan, S. P.
    Povey, M. J. W.
    BIOMEDICAL MATERIALS, 2010, 5 (05)
  • [8] DEGRADATION OF POLY(LACTIC-CO-GLYCOLIC ACID) MICROSPHERES - EFFECT OF COPOLYMER COMPOSITION
    PARK, TG
    BIOMATERIALS, 1995, 16 (15) : 1123 - 1130
  • [9] In vitro degradation of poly(lactic-co-glycolic) acid random copolymers
    Vey, Elisabeth
    Miller, Aline F.
    Claybourn, Mike
    Saiani, Alberto
    MACROMOLECULAR SYMPOSIA, 2007, 251 : 81 - 87
  • [10] Loading of gentamicin onto poly lactic-co-glycolic acid and poly lactic-co-glycolic acid/nano-hydroxyapatite composite microspheres.
    Nojehdehian, Hanieh
    Ekrami, Malihe
    Shahriari, Mehrnoosh Hasan
    Karimi, Reza
    Jaberiansari, Zahra
    BIOMEDICAL RESEARCH-INDIA, 2016, 27 (01): : 70 - 78