Solenoidal extensions of vector fields in two-dimensional unbounded domains

被引:1
|
作者
Chipot, Michel [1 ]
机构
[1] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
关键词
GENERAL OUTFLOW CONDITION; NAVIER-STOKES EQUATIONS; LERAYS PROBLEM; FLOW;
D O I
10.1016/j.crma.2016.02.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this note is to construct solenoidal extensions of vector fields defined on the boundary of simply connected domains having outlets to infinity and which satisfy the Leray-Hopf condition. The case of non-simply connected domains is also mentioned, in particular in the case when the domain admits a symmetry axis. This kind of extensions allows us to solve the stationary Navier-Stokes problem with nonhomogeneous boundary conditions in such domains. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:481 / 485
页数:5
相关论文
共 50 条
  • [1] ON TWO-DIMENSIONAL HARMONIC EXTENSIONS OF VECTOR FIELDS AND STELLARATOR COILS
    Golab, Adam J.
    Robinson, James C.
    Rodrigo, Jose L.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) : 4880 - 4911
  • [2] On some solenoidal vector fields in spherical domains
    V. V. Aksenov
    [J]. Differential Equations, 2012, 48 : 1042 - 1045
  • [3] On some solenoidal vector fields in spherical domains
    Aksenov, V. V.
    [J]. DIFFERENTIAL EQUATIONS, 2012, 48 (07) : 1042 - 1045
  • [4] The Helmholtz decomposition of vector fields for two-dimensional exterior Lipschitz domains
    Watanabe, Keiichi
    [J]. AIMS MATHEMATICS, 2024, 9 (07): : 17886 - 17900
  • [5] TWO-DIMENSIONAL MINIMAL GRAPHS OVER UNBOUNDED DOMAINS
    Spruck, Joel
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2002, 1 (04) : 632 - U138
  • [6] A Characterization of Harmonic Lr-Vector Fields in Two-Dimensional Exterior Domains
    Hieber, Matthias
    Kozono, Hideo
    Seyfert, Anton
    Shimizu, Senjo
    Yanagisawa, Taku
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (04) : 3742 - 3759
  • [7] Semiglobal models of extensions of two-dimensional local fields
    Zhukov I.B.
    [J]. Vestnik St. Petersburg University: Mathematics, 2010, 43 (1) : 33 - 38
  • [8] Two-dimensional global manifolds of vector fields
    Krauskopf, B
    Osinga, H
    [J]. CHAOS, 1999, 9 (03) : 768 - 774
  • [9] Semi-analytical elastostatic analysis of unbounded two-dimensional domains
    Deeks, AJ
    Wolf, JP
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2002, 26 (11) : 1031 - 1057
  • [10] NUMERICAL SOLUTION OF A TWO-DIMENSIONAL NONLOCAL WAVE EQUATION ON UNBOUNDED DOMAINS
    Du, Qiang
    Han, Houde
    Zhang, Jiwei
    Zheng, Chunxiong
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : A1430 - A1445