Prescribed mean curvature hypersurfaces in Hn+1(-1) with convex planar boundary, I

被引:0
|
作者
Barbosa, JLM
Earp, RS
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-24453900 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
关键词
mean curvature; hyperbolic space; Dirichlet problem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study immersed prescribed mean curvature compact hypersurfaces with boundary in Hn+1 (-l). When the boundary is a convex planar smooth manifold with all principal curvatures greater than 1, we solve a nonparametric Dirichlet problem and use this, together with a general flux formula, to prove a parametric uniqueness result, in the class of all immersed compact hypersurfaces with the same boundary. We specialize this result to a constant mean curvature, obtaining a characterization of totally umbilic hypersurface caps.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条