Surface Diffusion and Dissolution Kinetics in the Electrolyte-Metal Interface

被引:31
|
作者
Policastro, S. A. [1 ]
Carnahan, J. C. [2 ]
Zangari, G. [3 ]
Bart-Smith, H. [4 ]
Seker, E. [6 ]
Begley, M. R. [4 ]
Reed, M. L. [5 ]
Reynolds, P. F. [2 ]
Kelly, R. G. [3 ]
机构
[1] USN Acad, Dept Mech Engn, Annapolis, MD 21402 USA
[2] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22904 USA
[3] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
[4] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[5] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
[6] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Shriners Hosp Children,Ctr Engn Med,Dept Surg, Boston, MA 02114 USA
基金
美国国家科学基金会;
关键词
NANOPOROUS METALS; CORROSION; EVOLUTION;
D O I
10.1149/1.3478572
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Modeling of dealloying has often used a local bond-breaking approach to define the energy barrier to simulate dissolution and surface diffusion. The energy barriers are tacitly assumed to be independent of the local solution chemistry at the metal/solution interface. In this work, an interaction energy parameter is added to the local bond-breaking model that accounts for the species-specific physics of the actual atom-water molecule, atom-ion interactions and allows complex atomistic behavior to be abstracted in the modeling of the diffusion and dissolution processes. Variations in the interactions of the electrolyte components with the metal atoms led to the prediction of different surface morphologies on a binary alloy sample surface that mirror the behaviors experimentally observed in dealloying experiments in Au-Cu alloys including the formation of Au-enriched surface islands at applied potentials below the critical potential and three-dimensional porosity at applied potentials above the critical potential. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3478572] All rights reserved.
引用
收藏
页码:C328 / C337
页数:10
相关论文
共 50 条
  • [1] Surface embedded atom model of the electrolyte-metal interface
    Haftel, MI
    Rosen, M
    PHYSICAL REVIEW B, 2001, 64 (19):
  • [2] The nanoscale structure of the electrolyte-metal oxide interface
    Steinruck, Hans-Georg
    Cao, Chuntian
    Tsao, Yuchi
    Takacs, Christopher J.
    Konovalov, Oleg
    Vatamanu, Jenel
    Borodin, Oleg
    Toney, Michael F.
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (03) : 594 - 602
  • [3] IONIC ADSORPTION AT ELECTROLYTE-METAL ELECTRODE INTERFACE
    KUKLIN, RN
    SOVIET ELECTROCHEMISTRY, 1977, 13 (08): : 1007 - 1013
  • [4] Ion solvation kinetics in bipolar membranes and at electrolyte-metal interfaces
    Rodellar, Carlos G.
    Gisbert-Gonzalez, Jose M.
    Sarabia, Francisco
    Roldan Cuenya, Beatriz
    Oener, Sebastian Z.
    NATURE ENERGY, 2024, 9 (05) : 548 - 558
  • [5] SPECIAL FEATURES OF POLARIZATION CURVE FOR SOLID ELECTROLYTE-METAL INTERFACE
    GUREVICH, YY
    KHARKATS, YI
    SOVIET ELECTROCHEMISTRY, 1976, 12 (11): : 1607 - 1608
  • [6] Measurement of magnetic flux density on a rotating distorted electrolyte-metal interface
    Men, SQ
    Resagk, C
    Ziolkowski, M
    Kuilekov, M
    Brauer, H
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2004, 15 (07) : 1323 - 1326
  • [7] Determination of electric fields in electrolyte-metal systems
    O. V. Hembara
    Z. O. Terlets’ka
    O. Ya. Chepil’
    Materials Science, 2007, 43 : 222 - 229
  • [8] The nanoscale structure of the electrolyte-metal oxide interface (vol 11, pg 594, 2018)
    Steinruck, Hans-Georg
    Cao, Chuntian
    Tsao, Yuchi
    Takacs, Christopher J.
    Konovalov, Oleg
    Vatamanu, Jenel
    Borodin, Oleg
    Toney, Michael F.
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (04) : 996 - 996
  • [9] Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte-Metal Interface in Aluminum Electrolysis Cells
    Hua, Jinsong
    Rudshaug, Magne
    Droste, Christian
    Jorgensen, Robert
    Giskeodegard, Nils-Haavard
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2018, 49 (03): : 1246 - 1266
  • [10] Determination of electric fields in electrolyte-metal systems
    Hembara, O. V.
    Terlets'ka, Z. O.
    Chepil, O. Ya.
    MATERIALS SCIENCE, 2007, 43 (02) : 222 - 229