An algebraic approach to solving boundary value problems

被引:0
|
作者
Pedersen, Paul S. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
boundary value problem; commutative algebra; Clifford analysis; residue class ring;
D O I
10.1080/17476930802045812
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P(y(1),..., y(n)), Q(y(1),..., y(n)) be polynomials in R[y(1),..., y(n)] and let Q = Z(Q(y(1),..., y(n))) = {(r(1),..., r(n)) is an element of R(n) |Q(r(1),..., r(n) ) = 0} be the real algebraic set associated with Q(y(1),..., y(n)) and let (Q) over cap be a compact subset of the algebraic set Q. We describe an algebraic approach for solving the general boundary value problem (BVP): given partial differential equation (PDE) P((partial derivative/partial derivative x(1),..., (partial derivative/partial derivative x(n))) and a continuous function q : (Q) over cap -> R, find u(x(1),..., x(n)) is an element of R[[x(1),..., x(n)]] so that P(partial derivative/partial derivative x(1),..., partial derivative/partial derivative x(n))u(x(1),..., x(n)) = 0 and u(x(1),..., x(n))|(Q) over cap = q. We will show how the general technique applies in the case that P(y) is a homogeneous polynomial of degree deg(P(y)) and Q(y) =P(y) + (P) over cap (y), where (P) over cap (y) is a polynomial having deg((P) over cap (y)) < deg(P(y)) and prove that the solution is unique in this case. This article brings together ideas from partial differential equations, a generalization of the theory of functions of a complex variable and the theory of commutative algebras.
引用
收藏
页码:803 / 816
页数:14
相关论文
共 50 条
  • [1] Collocation methods for solving linear differential-algebraic boundary value problems
    Stöver, R
    NUMERISCHE MATHEMATIK, 2001, 88 (04) : 771 - 795
  • [2] Collocation methods for solving linear differential-algebraic boundary value problems
    Ronald Stöver
    Numerische Mathematik, 2001, 88 : 771 - 795
  • [3] A method for solving boundary value problems and spectral problems for linear differential-algebraic systems
    A. A. Abramov
    V. I. Ul’yanova
    L. F. Yukhno
    Differential Equations, 2006, 42 : 932 - 940
  • [4] A method for solving boundary value problems and spectral problems for linear differential-algebraic systems
    Abramov, A. A.
    Ul'yanova, V. I.
    Yukhno, L. F.
    DIFFERENTIAL EQUATIONS, 2006, 42 (07) : 932 - 940
  • [5] Neural network approach for solving nonlocal boundary value problems
    Palade, V.
    Petrov, M. S.
    Todorov, T. D.
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (17): : 14153 - 14171
  • [6] An efficient approach for solving stiff nonlinear boundary value problems
    Makarov, Volodymyr L.
    Dragunov, Denys, V
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 452 - 470
  • [7] Neural network approach for solving nonlocal boundary value problems
    V. Palade
    M. S. Petrov
    T. D. Todorov
    Neural Computing and Applications, 2020, 32 : 14153 - 14171
  • [8] AN APPROACH TO SOLVING INTERIOR SPECTRAL BOUNDARY-VALUE-PROBLEMS
    DUBROVSKII, VV
    KRAVCHENKO, VF
    RUSSIAN MATHEMATICAL SURVEYS, 1994, 49 (01) : 227 - 228
  • [9] A New Approach for Solving Nonlinear Singular Boundary Value Problems
    Zhu, Hui
    Niu, Jing
    Zhang, Ruimin
    Lin, Yingzhen
    MATHEMATICAL MODELLING AND ANALYSIS, 2018, 23 (01) : 33 - 43
  • [10] AN ALGEBRAIC APPROACH FOR SOLVING MECHANICAL PROBLEMS
    DESOUZA, CF
    GANDELMAN, MM
    AMERICAN JOURNAL OF PHYSICS, 1990, 58 (05) : 491 - 495