Correction-to-scaling of random walks in disordered media

被引:7
|
作者
Lee, SB [1 ]
机构
[1] Kyungpook Natl Univ, Dept Phys, Taegu 702701, South Korea
来源
关键词
correction-to-scaling; random walks; disordered media; fractal dimension;
D O I
10.1142/S0217979203022787
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study the correction to scaling of the rms displacements of random walks in disordered media consisted of connected networks of the lattice percolation in two, three, and four dimensions. The two types of ensemble averages, i.e. an infinite-network average of random walks starting from an infinite network and an all-cluster average starting from any occupied site, are investigated using both the myoptic ants and the blind ants models. We find that the rms displacements exhibit strong nonanalytic corrections in all dimensions. The correction exponent 6 defined by the rms displacement of t-step random walks via R-t = At-1/dw (1 + Bt(-delta) + Ct(-1) + . . .) was found as delta similar or equal to 0.39, 0.27, and 0.27 for, respectively, two, three, and four dimensions for an infinite-network average, and delta similar or equal to 0.37, 0.28, and 0.24 for an all-cluster average.
引用
收藏
页码:4867 / 4881
页数:15
相关论文
共 50 条
  • [1] CORRECTION-TO-SCALING EXPONENT FOR SELF-AVOIDING WALKS
    LAM, PM
    [J]. PHYSICAL REVIEW B, 1990, 42 (07): : 4447 - 4452
  • [2] Scaling laws for random walks in long-range correlated disordered media
    Fricke, N.
    Zierenberg, J.
    Marenz, M.
    Spitzner, F. P.
    Blavatska, V.
    Janke, W.
    [J]. CONDENSED MATTER PHYSICS, 2017, 20 (01)
  • [3] Correction-to-scaling exponents for two-dimensional self-avoiding walks
    Caracciolo, S
    Guttmann, AJ
    Jensen, I
    Pelissetto, A
    Rogers, AN
    Sokal, AD
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2005, 120 (5-6) : 1037 - 1100
  • [4] Levy walks and scaling in quenched disordered media
    Burioni, Raffaella
    Caniparoli, Luca
    Vezzani, Alessandro
    [J]. PHYSICAL REVIEW E, 2010, 81 (06):
  • [5] Correction-to-Scaling Exponents for Two-Dimensional Self-Avoiding Walks
    Sergio Caracciolo
    Anthony J. Guttmann
    Iwan Jensen
    Andrea Pelissetto
    Andrew N. Rogers
    Alan D. Sokal
    [J]. Journal of Statistical Physics, 2005, 120 : 1037 - 1100
  • [6] The correction-to-scaling exponent in dilute systems
    Folk, R
    Holovatch, Y
    Yavors'kii, T
    [J]. JETP LETTERS, 1999, 69 (10) : 747 - 752
  • [8] The correction-to-scaling exponent in dilute systems
    R. Folk
    Yu. Holovatch
    T. Yavors’kii
    [J]. Journal of Experimental and Theoretical Physics Letters, 1999, 69 : 747 - 752
  • [9] Effect of temperature on biased random walks in disordered media
    Arapaki, E
    Argyrakis, P
    Avramov, I
    Milchev, A
    [J]. PHYSICAL REVIEW E, 1997, 56 (01): : R29 - R31
  • [10] Disordered Random Walks
    Pato, Mauricio P.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2021, 51 (02) : 238 - 243