Gauge transformation, elastic and inelastic interactions for the Whitham-Broer-Kaup shallow-water model

被引:10
|
作者
Wang, Lei [1 ]
Gao, Yi-Tian [2 ,3 ,4 ]
Gai, Xiao-Ling [2 ,3 ]
机构
[1] N China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Whitham-Broer-Kaup model; Elastic/inelastic interactions; Gauge transformation; Darboux transformation; Vandermonde-like determinant; Double Wronskian determinant; Symbolic computation; NONLINEAR SCHRODINGER MODEL; PARTIALLY COHERENT SOLITONS; VANDERMONDE-LIKE DETERMINANTS; FOLD DARBOUX TRANSFORMATION; CLASSICAL BOUSSINESQ SYSTEM; DOUBLE WRONSKIAN SOLUTIONS; TRAVELING-WAVE SOLUTIONS; ION-ACOUSTIC-WAVES; BACKLUND TRANSFORMATION; SYMBOLIC-COMPUTATION;
D O I
10.1016/j.cnsns.2011.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Whitham-Broer-Kaup (WBK) model is a model for the dispersive long wave in shallow water. With symbolic computation, gauge transformation between the WBK model and a parameter Ablowitz-Kaup-Newell-Segur (AKNS) system is hereby constructed. By selecting seeds, we derive two sorts of multi-soliton solutions for the WBK model via a N-fold Darboux transformation (DT) of the parameter AKNS system, which are expressed in terms of the Vandermonde-like and double Wronskian determinants, respectively. Different from the bilinear way, the double Wronskian solutions can be obtained via the N-fold DT with a linear algebraic system and matrix differential equation solved. A novel inelastic interaction is graphically discussed, in which the soliton complexes are formed after the collision. Our results could be helpful for interpreting certain shallow-water-wave phenomena. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2833 / 2844
页数:12
相关论文
共 50 条
  • [1] Inelastic interactions and double Wronskian solutions for the Whitham-Broer-Kaup model in shallow water
    Wang, Lei
    Gao, Yi-Tian
    Gai, Xiao-Ling
    Sun, Zhi-Yuan
    PHYSICA SCRIPTA, 2009, 80 (06)
  • [2] GAUGE TRANSFORMATION AND SOLITON SOLUTIONS FOR THE WHITHAM-BROER-KAUP SYSTEM IN THE SHALLOW WATER
    Shan, Wen-Rui
    Zhan, Yan
    Tian, Bo
    MODERN PHYSICS LETTERS B, 2012, 26 (25):
  • [3] Backlund transformation and exact solutions for Whitham-Broer-Kaup equations in shallow water
    Fan, EG
    Zhang, HQ
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1998, 19 (08) : 713 - 716
  • [4] Backlund transformation and exact solutions for Whitham-Broer-Kaup equations in shallow water
    Engui F.
    Hongqing Z.
    Applied Mathematics and Mechanics, 1998, 19 (8) : 713 - 716
  • [5] BACKLUND TRANSFORMATION AND EXACT SOLUTIONS FOR WHITHAM-BROER-KAUP EQUATIONS IN SHALLOW WATER
    范恩贵
    张鸿庆
    Applied Mathematics and Mechanics(English Edition), 1998, (08) : 713 - 716
  • [6] Elastic-inelastic-interaction coexistence and double Wronskian solutions for the Whitham-Broer-Kaup shallow-water-wave model
    Lin, Guo-Dong
    Gao, Yi-Tian
    Wang, Lei
    Meng, De-Xin
    Yu, Xin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (08) : 3090 - 3096
  • [7] N-Fold Darboux Transformation and Bidirectional Solitons for Whitham-Broer-Kaup Model in Shallow Water
    Wang Lei
    Gao Yi-Tian
    Gai Xiao-Ling
    Meng De-Xin
    Lue Xing
    Yu Xin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (03) : 413 - 422
  • [8] N-Fold Darboux Transformation and Bidirectional Solitons for Whitham-Broer-Kaup Model in Shallow Water
    王雷
    高以天
    盖晓玲
    孟得新
    吕兴
    于鑫
    CommunicationsinTheoreticalPhysics, 2010, 53 (03) : 413 - 422
  • [9] Solitary waves of the fractal Whitham-Broer-Kaup equation in shallow water
    Liang, Yan-Hong
    Wang, Guo-Dong
    Wang, Kang-Jia
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2021, 12 (01)
  • [10] EXACT SOLUTION OF WHITHAM-BROER-KAUP SHALLOW WATER WAVE EQUATIONS
    Ahmad, Jamshad
    Mushtaq, Mariyam
    Sajjad, Nadeem
    JOURNAL OF SCIENCE AND ARTS, 2015, (01): : 5 - 12