Multivariate Gamma Regression: Parameter Estimation, Hypothesis Testing, and Its Application

被引:8
|
作者
Rahayu, Anita [1 ,2 ]
Purhadi [1 ]
Sutikno [1 ]
Prastyo, Dedy Dwi [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Stat, Surabaya 60111, Indonesia
[2] Bina Nusantara Univ, Dept Stat, Jakarta 11480, Indonesia
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 05期
关键词
human development dimensions; maximum likelihood estimation; maximum likelihood ratio test; multivariate gamma regression; Wald test;
D O I
10.3390/sym12050813
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gamma distribution is a general type of statistical distribution that can be applied in various fields, mainly when the distribution of data is not symmetrical. When predictor variables also affect positive outcome, then gamma regression plays a role. In many cases, the predictor variables give effect to several responses simultaneously. In this article, we develop a multivariate gamma regression (MGR), which is one type of non-linear regression with response variables that follow a multivariate gamma (MG) distribution. This work also provides the parameter estimation procedure, test statistics, and hypothesis testing for the significance of the parameter, partially and simultaneously. The parameter estimators are obtained using the maximum likelihood estimation (MLE) that is optimized by numerical iteration using the Berndt-Hall-Hall-Hausman (BHHH) algorithm. The simultaneous test for the model's significance is derived using the maximum likelihood ratio test (MLRT), whereas the partial test uses the Wald test. The proposed MGR model is applied to model the three dimensions of the human development index (HDI) with five predictor variables. The unit of observation is regency/municipality in Java, Indonesia, in 2018. The empirical results show that modeling using multiple predictors makes more sense compared to the model when it only employs a single predictor.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Parameter estimation and hypothesis testing on geographically weighted gamma regression
    Putri, Dina Eka
    Purhadi
    Prastyo, Dedy Dwi
    [J]. ASIAN MATHEMATICAL CONFERENCE 2016 (AMC 2016), 2017, 893
  • [2] Parameter Estimation and Hypothesis Testing of Multivariate Poisson Inverse Gaussian Regression
    Mardalena, Selvi
    Purhadi, Purhadi
    Purnomo, Jerry Dwi Trijoyo
    Prastyo, Dedy Dwi
    [J]. SYMMETRY-BASEL, 2020, 12 (10): : 1 - 16
  • [3] Parameter Estimation and Hypothesis Testing of Geographically Weighted Multivariate Generalized Poisson Regression
    Berliana, Sarni Maniar
    Purhadi
    Sutikno
    Rahayu, Santi Puteri
    [J]. MATHEMATICS, 2020, 8 (09)
  • [4] Multivariate Generalized Poisson Regression Model With Exposure and Correlation as a Function of Covariates: Parameter Estimation and Hypothesis Testing
    Berliana, Sarni Maniar
    Purhadi
    Sutikno
    Rahayu, Santi Puteri
    [J]. PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: DEEPENING MATHEMATICAL CONCEPTS FOR WIDER APPLICATION THROUGH MULTIDISCIPLINARY RESEARCH AND INDUSTRIES COLLABORATIONS, 2019, 2192
  • [5] Estimation and hypothesis testing in multivariate linear regression models under non normality
    Islam, M. Qamarul
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (17) : 8521 - 8543
  • [6] Parameter Estimation and Hypothesis Testing of The Bivariate Polynomial Ordinal Logistic Regression Model
    Rifada, Marisa
    Ratnasari, Vita
    Purhadi, Purhadi
    [J]. MATHEMATICS, 2023, 11 (03)
  • [7] Estimation and Hypothesis Testing for the Parameters of Multivariate Zero Inflated Generalized Poisson Regression Model
    Sari, Dewi Novita
    Purhadi, Purhadi
    Rahayu, Santi Puteri
    Irhamah, Irhamah
    [J]. SYMMETRY-BASEL, 2021, 13 (10):
  • [8] Shrinkage estimation for the regression parameter matrix in multivariate regression model
    Chitsaz, Shabnam
    Ahmed, S. Ejaz
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (02) : 309 - 323
  • [9] An Improved Estimation in Regression Parameter Matrix in Multivariate Regression Model
    Chitsaz, S.
    Ahmed, S. Ejaz
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (13-14) : 2305 - 2320
  • [10] Uncertain hypothesis testing of multivariate uncertain regression model
    Zhang, Guidong
    Sheng, Yuhong
    Shi, Yuxin
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (06) : 7341 - 7350