FURTHER CONVERGENCE ANALYSIS OF ITERATIVE METHODS FOR GENERALIZED SPLIT FEASIBILITY PROBLEMS IN HILBERT SPACES

被引:0
|
作者
Li, Lulu [1 ]
Xu, Hong-Kun [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Peoples R China
关键词
Split feasibility problem; fixed point; nonexpansive mapping; maximal monotone operator; iterative method; VISCOSITY APPROXIMATION METHODS; FIXED-POINT THEOREMS; NONEXPANSIVE-MAPPINGS; NONLINEAR MAPPINGS; ALGORITHMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We further study convergence analysis of the iterative algorithms proposed in [33] for the generalized split feasibility problem. Weak convergence results under more relaxed conditions are obtained. Regularization is introduced to obtain strong convergence of the viscosity approximation method.
引用
收藏
页码:2575 / 2589
页数:15
相关论文
共 50 条
  • [1] Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces
    Takahashi, Wataru
    Xu, Hong-Kun
    Yao, Jen-Chin
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2015, 23 (02) : 205 - 221
  • [2] Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces
    Wataru Takahashi
    Hong-Kun Xu
    Jen-Chin Yao
    [J]. Set-Valued and Variational Analysis, 2015, 23 : 205 - 221
  • [3] Strongly Convergent Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces
    Akashi, Shigeo
    Kimura, Yasunori
    Takahashi, Wataru
    [J]. JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 917 - 938
  • [4] GENERALIZED SPLIT FEASIBILITY PROBLEMS AND STRONG CONVERGENCE THEOREMS IN HILBERT SPACES
    Hojo, Mayumi
    Plubtieng, Somyot
    Takahashi, Wataru
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (01): : 101 - 118
  • [5] Generalized extragradient iterative methods for solving split feasibility and fixed point problems in Hilbert spaces
    P. Chuasuk
    A. Kaewcharoen
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [6] Generalized extragradient iterative methods for solving split feasibility and fixed point problems in Hilbert spaces
    Chuasuk, P.
    Kaewcharoen, A.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)
  • [7] STRONG CONVERGENCE THEOREMS BY SHRINKING PROJECTION METHODS FOR GENERALIZED SPLIT FEASIBILITY PROBLEMS IN HILBERT SPACES
    Komiya, Hidetoshi
    Takahashi, Wataru
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (01): : 1 - 17
  • [8] Iterative methods for generalized split feasibility problems in Banach spaces
    Ansari, Qamrul Hasan
    Rehan, Aisha
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2017, 33 (01) : 9 - 26
  • [9] Iterative methods of strong convergence theorems for the split feasibility problem in Hilbert spaces
    Yuchao Tang
    Liwei Liu
    [J]. Journal of Inequalities and Applications, 2016
  • [10] Iterative methods of strong convergence theorems for the split feasibility problem in Hilbert spaces
    Tang, Yuchao
    Liu, Liwei
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,