Parkinson's disease EMG signal prediction using Neural Networks

被引:0
|
作者
Zanini, Rafael Anicet [1 ]
Colombini, Esther Luna [1 ]
Ferrari de Castro, Maria Claudia [2 ]
机构
[1] Univ Estadual Campinas, Lab Robot & Cognit Sci LaRoCS, Campinas, Brazil
[2] Fundao Educ Inaciana Padre Sabia Medeiros FEI, Dept Comp Sci, Sao Bernardo Do Campo, Brazil
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast.
引用
收藏
页码:2446 / 2453
页数:8
相关论文
共 50 条
  • [1] Prediction of Parkinson's disease tremor onset using artificial neural networks
    Pan, S.
    Warwick, K.
    Stein, J.
    Gasson, M. N.
    Wang, S. Y.
    Aziz, T. Z.
    Burgess, J.
    PROCEEDINGS OF THE FIFTH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2007, : 341 - 345
  • [2] Prediction of Parkinson’s disease based on artificial neural networks using speech datasets
    Liu W.
    Liu J.
    Peng T.
    Wang G.
    Balas V.E.
    Geman O.
    Chiu H.-W.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (10) : 13571 - 13584
  • [3] EMG Signal Morphology in Essential Tremor and Parkinson's Disease
    Ruonala, V.
    Meigal, A.
    Rissanen, S. M.
    Airaksinen, O.
    Kankaanpaa, M.
    Karjalainen, P. A.
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 5765 - 5768
  • [4] Analysis of surface EMG signal morphology in Parkinson's disease
    Rissanen, Saara
    Kankaanpaa, Markku
    Tarvainen, Mika P.
    Nuutinen, Juho
    Tarkka, Ina M.
    Airaksinen, Olavi
    Karjalainen, Pasi A.
    PHYSIOLOGICAL MEASUREMENT, 2007, 28 (12) : 1507 - 1521
  • [5] Gait angle prediction for lower limb orthotics and prostheses using an EMG signal and neural networks
    Lee, JW
    Lee, GK
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2005, 3 (02) : 152 - 158
  • [6] Prediction of Parkinson's disease tremor onset using radial basis function neural networks
    Wu, Defeng
    Warwick, Kevin
    Ma, Zi
    Burgess, Jonathan G.
    Pan, Song
    Aziz, Tipu Z.
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (04) : 2923 - 2928
  • [7] Recognition of wrist EMG signal patterns using neural networks
    Matsumura, Y
    Fukumi, M
    Akamatsu, N
    Nakaura, K
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2004, 15 (3-4) : 165 - 171
  • [8] Parkinson's Disease Classification Using Artificial Neural Networks
    Castro, Carlos
    Vargas-Viveros, Eunice
    Sanchez, Alejandro
    Gutierrez-Lopez, Everardo
    Flores, Dora-Luz
    VIII LATIN AMERICAN CONFERENCE ON BIOMEDICAL ENGINEERING AND XLII NATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2020, 75 : 1060 - 1065
  • [9] Enhancing Parkinson's Disease Prediction Using Deep Learning-Based Convolutional Neural Networks
    Ramya, R.
    Ramesh, C.
    Murugesan, P.
    Nithya, N.
    Kumar, G. Sathish
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (05) : 1866 - 1874
  • [10] Surface EMG Signal Classification for Parkinson's Disease using WCC Descriptor and ANN Classifier
    Bengacemi, Hichem
    Hacine-Gharbi, Abdenour
    Ravier, Philippe
    Abed-Meraim, Karim
    Buttelli, Olivier
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM), 2021, : 287 - 294