Assessing parameter uncertainty via bootstrap likelihood ratio confidence regions

被引:5
|
作者
Carpenter, J [1 ]
机构
[1] Univ London London Sch Hyg & Trop Med, Med Stat Unit, London WC1E 7HT, England
关键词
D O I
10.1080/02664769822873
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we show that, under certain regularity conditions, constructing likelihood ratio confidence regions using a boostrap estimate of the distribution of the likelihood ratio statistic-instead of the usual chi(2) approximation-leads to regions which have a coverage error of O(n(-2)), which is the same as that achieved using a Bartlett-corrected likelihood ratio statistic. We use the boostrap method to assess the uncertainty associated with dose-response parameters that arise in models for the Japanese atomic bomb survivors data.
引用
收藏
页码:639 / 649
页数:11
相关论文
共 50 条
  • [1] ON THE BOOTSTRAP AND LIKELIHOOD-BASED CONFIDENCE-REGIONS
    HALL, P
    [J]. BIOMETRIKA, 1987, 74 (03) : 481 - 493
  • [2] Smoothed and iterated bootstrap confidence regions for parameter vectors
    Ghosh, Santu
    Polansky, Alan M.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 132 : 171 - 182
  • [3] EMPIRICAL LIKELIHOOD RATIO CONFIDENCE-REGIONS
    OWEN, A
    [J]. ANNALS OF STATISTICS, 1990, 18 (01): : 90 - 120
  • [4] Investigation of parameter uncertainty in clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap
    O'Hagan, Adrian
    Murphy, Thomas Brendan
    Scrucca, Luca
    Gormley, Isobel Claire
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (04) : 1779 - 1813
  • [5] Investigation of parameter uncertainty in clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap
    Adrian O’Hagan
    Thomas Brendan Murphy
    Luca Scrucca
    Isobel Claire Gormley
    [J]. Computational Statistics, 2019, 34 : 1779 - 1813
  • [6] Nonparametric confidence regions via the analytic wild bootstrap
    Burak, Katherine L.
    Kashlak, Adam B.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (01): : 77 - 94
  • [7] Plotting Likelihood-Ratio-Based Confidence Regions for Two-Parameter Univariate Probability Models
    Weid, Christopher
    Loh, Andrew
    Leemis, Lawrence
    [J]. AMERICAN STATISTICIAN, 2020, 74 (02): : 156 - 168
  • [8] Bounds on coverage probabilities of the empirical likelihood ratio confidence regions
    Tsao, M
    [J]. ANNALS OF STATISTICS, 2004, 32 (03): : 1215 - 1221
  • [9] Design for model parameter uncertainty using nonlinear confidence regions
    Rooney, WC
    Biegler, LT
    [J]. AICHE JOURNAL, 2001, 47 (08) : 1794 - 1804
  • [10] Bootstrap confidence regions for correspondence analysis
    Ringrose, Trevor J.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (10) : 1397 - 1413