Signal analysis and anomaly detection for flood early warning systems

被引:9
|
作者
Pyayt, A. L. [1 ,2 ]
Kozionov, A. P. [1 ,3 ]
Kusherbaeva, V. T. [1 ]
Mokhov, I. I. [1 ]
Krzhizhanovskaya, V. V. [2 ,5 ,7 ]
Broekhuijsen, B. J. [4 ]
Meijer, R. J. [2 ,4 ]
Sloot, P. M. A. [2 ,5 ,6 ]
机构
[1] Siemens Corp Technol, St Petersburg 191186, Russia
[2] Univ Amsterdam, NL-1098 XH Amsterdam, Netherlands
[3] St Petersburg State Univ Aerosp Instrumentat, St Petersburg 190000, Russia
[4] Nederlandse Organisatie Toegepast Natuurwetenscha, NL-9727 DW Groningen, Netherlands
[5] Natl Res Univ, ITMO, St Petersburg 197101, Russia
[6] Nanyang Technol Univ, Singapore 639798, Singapore
[7] St Petersburg State Polytech Univ, St Petersburg 195251, Russia
关键词
anomaly detection; levee monitoring; one-side classification; 'Urbanflood'; TIME; PROBABILITY; DIKES;
D O I
10.2166/hydro.2014.067
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe the detection methods and the results of anomalous conditions in dikes (earthen dams/levees) based on a simultaneous processing of several data streams originating from sensors installed in these dikes. Applied methods are especially valuable in cases where lack of information or computational resources prohibit computing the state of the dike with finite element and other mathematical models. The data-driven methods are part of the artificial intelligence (AI) component of the 'Urbanflood' early warning system. This AI component includes pre-processing (e.g., gap filling and measurements synchronization procedures) of data streams, feature extraction and anomaly detection by one-side (also known as one-class) classification methods. Our approach has been successfully validated during a non-destructive piping experiment at the Zeeland dike (The Netherlands).
引用
收藏
页码:1025 / 1043
页数:19
相关论文
共 50 条
  • [1] Design of Early Warning Flood Detection Systems for Developing Countries
    Basha, Elizabeth
    Rus, Daniela
    [J]. 2007 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES AND DEVELOPMENT (ICTD), 2007, : 10 - 19
  • [2] Early warning systems for malaria outbreaks in Thailand: an anomaly detection approach
    Oraya Srimokla
    Wirichada Pan-Ngum
    Amnat Khamsiriwatchara
    Chantana Padungtod
    Rungrawee Tipmontree
    Noppon Choosri
    Sompob Saralamba
    [J]. Malaria Journal, 23
  • [3] Early warning systems for malaria outbreaks in Thailand: an anomaly detection approach
    Srimokla, Oraya
    Pan-Ngum, Wirichada
    Khamsiriwatchara, Amnat
    Padungtod, Chantana
    Tipmontree, Rungrawee
    Choosri, Noppon
    Saralamba, Sompob
    [J]. MALARIA JOURNAL, 2024, 23 (01)
  • [4] Anomaly Detection in Biological Early Warning Systems Using Unsupervised Machine Learning
    Grekov, Aleksandr N.
    Kabanov, Aleksey A.
    Vyshkvarkova, Elena V.
    Trusevich, Valeriy V.
    [J]. SENSORS, 2023, 23 (05)
  • [5] Lessons from flood early warning systems
    Cools, Jan
    Innocenti, Demetrio
    O'Brien, Sarah
    [J]. ENVIRONMENTAL SCIENCE & POLICY, 2016, 58 : 117 - 122
  • [6] Improving flood early warning systems in Kabbe, Namibia: A situational analysis approach
    Moises, Deolfa Jose
    Kunguma, Olivia
    [J]. INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2023, 93
  • [7] Power Quality Early Warning Based on Anomaly Detection
    Gu, Wei
    Bai, Jingjing
    Yuan, Xiaodong
    Zhang, Shuai
    Wang, Yuankai
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2014, 9 (04) : 1171 - 1181
  • [8] Gendering flood early warning systems: the case of Pakistan
    Mustafa, Daanish
    Gioli, Giovanna
    Qazi, Suleman
    Waraich, Rizwana
    Rehman, Abdul
    Zahoor, Rashda
    [J]. ENVIRONMENTAL HAZARDS-HUMAN AND POLICY DIMENSIONS, 2015, 14 (04): : 312 - 328
  • [9] Impact of social preparedness on flood early warning systems
    Lopez, M. Girons
    Di Baldassarre, G.
    Seibert, J.
    [J]. WATER RESOURCES RESEARCH, 2017, 53 (01) : 522 - 534
  • [10] Assessing Flood Early Warning Systems for Flash Floods
    Salgado, Maria J. Henao
    Najera, Jeannette Zambrano
    [J]. FRONTIERS IN CLIMATE, 2022, 4