ADAPTIVE PARAMETER ESTIMATION OF PERSON RECOGNITION MODEL IN A STOCHASTIC HUMAN TRACKING PROCESS

被引:0
|
作者
Nakanishi, W. [1 ]
Fuse, T. [1 ]
Ishikawa, T. [1 ]
机构
[1] Univ Tokyo, Dept Civil Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
关键词
State space modelling; Human tracking; Sequential image; Adaptive parameter estimation; Close Range; MULTIPLE HUMAN TRACKING;
D O I
10.5194/isprsarchives-XL-4-W5-49-2015
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 50 条
  • [1] The Problem of Bias in Person Parameter Estimation in Adaptive Testing
    Doebler, Anna
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2012, 36 (04) : 255 - 270
  • [2] Parameter estimation for stochastic SIR model
    Li, Shuang
    Xiong, Jie
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [3] Incorporating the Stochastic Process Setup in Parameter Estimation
    Sant, Lino
    Caruana, Mark Anthony
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (04) : 1029 - 1036
  • [4] Incorporating the Stochastic Process Setup in Parameter Estimation
    Lino Sant
    Mark Anthony Caruana
    Methodology and Computing in Applied Probability, 2015, 17 : 1029 - 1036
  • [5] The Impact of Item Model Parameter Variations on Person Parameter Estimation in Computerized Adaptive Testing With Automatically Generated Items
    Tian, Chen
    Choi, Jaehwa
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2023, 47 (04) : 275 - 290
  • [6] An adaptive parameter model for maneuvering target tracking
    Qiu, BS
    Liu, HY
    Cai, YQ
    Zhang, DC
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 465 - 469
  • [7] Stochastic Simulation and Parameter Estimation of the ICING Model
    Palancz, Bela
    Stewart, Kent
    Homlok, Jozsef
    Pretty, Christopher G.
    Chase, J. Geoffrey
    Benyo, Balazs
    IFAC PAPERSONLINE, 2016, 49 (05): : 218 - 223
  • [8] Ergodicity of stochastic smoking model and parameter estimation
    Xuekang Zhang
    Zhenzhong Zhang
    Jinying Tong
    Mei Dong
    Advances in Difference Equations, 2016
  • [9] Ergodicity of stochastic smoking model and parameter estimation
    Zhang, Xuekang
    Zhang, Zhenzhong
    Tong, Jinying
    Dong, Mei
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [10] Parameter estimation for the stochastic SIS epidemic model
    Pan J.
    Gray A.
    Greenhalgh D.
    Mao X.
    Statistical Inference for Stochastic Processes, 2014, 17 (1) : 75 - 98