Categorified Young symmetrizers and stable homology of torus links II

被引:8
|
作者
Abel, Michael [1 ]
Hogancamp, Matthew [2 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Indiana Univ, Dept Math, Bloomington, IN 47401 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2017年 / 23卷 / 03期
关键词
Hochschild cohomology; Young symmetrizers; Categorfication; Torus knots;
D O I
10.1007/s00029-017-0336-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct complexes P-1n of Soergel bimodules which categorify the Young idempotents corresponding to one-column partitions. A beautiful recent conjecture (Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology. arXiv: 1608.07308, 2016) ofGorsky-Negut-Rasmussen relates the Hochschild homology of categorified Young idempotents with the flag Hilbert scheme. We prove this conjecture for P-1n and its twisted variants. We also show that this homology is also a certain limit of Khovanov-Rozansky homologies of torus links. Along the way we obtain several combinatorial results which could be of independent interest.
引用
收藏
页码:1739 / 1801
页数:63
相关论文
共 15 条