Modeling and three-dimensional simulation of the neutral dynamics in an air discharge confined in a microcavity. I. Formation and free expansion of the pressure waves

被引:19
|
作者
Eichwald, O [1 ]
Yousfi, M [1 ]
Bayle, P [1 ]
Jugroot, M [1 ]
机构
[1] Univ Toulouse 3, CPAT, CNRS, ESA 5002, F-31062 Toulouse, France
关键词
D O I
10.1063/1.368713
中图分类号
O59 [应用物理学];
学科分类号
摘要
A three-dimensional numerical analysis of the neutral dynamics is performed in the case of a short-gap (0.5 mm spark discharge in air confined in microcavities at atmospheric pressure (760 Torr) and ambient temperature (293 K). This work is undertaken in the framework of silicon microsystems bearing a micropump actuated by pressure waves which result from a discharge. The short-gap discharge characteristics are taken from experimental results namely 470 ns for the duration and 13.5 W for the maximum injected power. The neutral gas evolution is described by the classical transport equations and solved by a powerful numerical monotonic upstream-centered scheme for conversion laws. The gas-solid interaction occurring in thermal and hydrodynamic boundary layers is taken into account assuming that the microcavity temperature remains invariant (293 K), This article (part I) is devoted to the first evolution phase of the neutral dynamics whose the duration corresponds to the discharge time. Our results clearly show that the first phase can again be split into a neutral inertia phase (during which the thermal energy transferred is stored in the ionized channel) followed by a free expansion one where this thermal energy is dissipated in the microcavity volume. The latter phase is analyzed before the neutral heterogeneities reach the microcavity's walls, We also discuss the specific gas behaviors of the gas nearby the electrode surfaces, following heat exchanges and viscous stress. (C) 1998 American Institute of Physics. [S0021-8979(98)00821-4].
引用
收藏
页码:4704 / 4715
页数:12
相关论文
共 10 条