Titanium dioxide waveguide with an embedded grating coupler

被引:0
|
作者
Gillman, Edward S. [1 ]
Raspopin, Alexander [1 ]
Costello, David J. [1 ]
Moreno, Miguel [1 ]
Kasica, Richard [2 ]
机构
[1] Senspex Inc, 9798 Coors Blvd NW,Bldg B, Albuquerque, NM 87114 USA
[2] Natl Inst Stand & Technol, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
关键词
E-Beam lithography; grating coupler; waveguide; nanofabrication;
D O I
10.1117/12.849577
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Optical transport in planar waveguide structures is of great importance for spectroscopic chemical and biological sensing applications. We have fabricated a TiO2-polymer planar waveguide with an embedded grating coupler. The grating coupler consists of a low index layer of SiO2 on a Si(100) substrate. The SiO2 layer has a grating pattern reactive ion etched into the surface. On top of this surface is a high index TiO2 waveguide. The TiO2 film is generated from a spin-coated polymer solution, OptiNDEX (TM) EXP04054 from Brewer Science. The TiO2 film has low optical absorption, a high refractive index, and good thermal and UV stability. It is possible to make up to a 420nm film in a single coating operation. To form the TiO2 film the polymer solution is spin-coated onto a wafer and the wafer is baked at 300 degrees C for 10 minutes. Scanning electron microscopy and focused ion beam cross-sections verified that the TiO2 conformally fills the groves of the grating. We made electrodynamic calculations based on the indices of the materials for our waveguiding structure and the wavelength of the incident light for single-mode wave guiding. These calculations gave a projected TiO2 thickness for our waveguides. Experimental results show that the waveguide structures that we fabricated were in close agreement with these predictions.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Subwavelength waveguide grating coupler
    Cheben, P.
    Xu, D-X.
    Janz, S.
    Densmore, A.
    [J]. 2006 3RD IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS, 2006, : 143 - +
  • [2] Waveguide silicon nitride grating coupler
    Litvik, Jan
    Dolnak, Ivan
    Dado, Milan
    [J]. 20TH SLOVAK-CZECH-POLISH OPTICAL CONFERENCE ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS, 2016, 10142
  • [3] Waveguide grating coupler with subwavelength microstructures
    Halir, Robert
    Cheben, Pavel
    Janz, Siegfried
    Xu, Dan-Xia
    Molina-Fernandez, Inigo
    Wanguemert-Perez, Juan G.
    [J]. OPTICS LETTERS, 2009, 34 (09) : 1408 - 1410
  • [4] Bandwidth analysis of waveguide grating coupler
    Xiao, Zhe
    Liow, Tsung-Yang
    Zhang, Jing
    Shum, Ping
    Luan, Feng
    [J]. OPTICS EXPRESS, 2013, 21 (05): : 5688 - 5700
  • [5] Silicon waveguide grating coupler based on a segmented grating structure
    Hong, Jianxun
    Qiu, Feng
    Spring, Andrew M.
    Yokoyama, Shiyoshi
    [J]. APPLIED OPTICS, 2018, 57 (12) : 3301 - 3305
  • [6] Waveguide grating coupler with tailored wavelength response
    Li, M
    Feng, Y
    Luo, BS
    Liu, HC
    Grover, CP
    [J]. 18TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR THE NEXT MILLENNIUM, TECHNICAL DIGEST, 1999, 3749 : 128 - 129
  • [7] Light focusing by chirped waveguide grating coupler
    Kumar, Pradeep
    Bergner, Brent
    Cook, David
    Avrutsky, Ivan
    [J]. NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES IV, 2011, 8032
  • [8] Atomic layer deposited titanium dioxide and its application in resonant waveguide grating
    Alasaarela, T.
    Saastamoinen, T.
    Hiltunen, J.
    Saynatjoki, A.
    Tervonen, A.
    Stenberg, P.
    Kuittinen, M.
    Honkanen, S.
    [J]. APPLIED OPTICS, 2010, 49 (22) : 4321 - 4325
  • [9] A broad-band waveguide grating coupler with a subwavelength grating mirror
    Cheben, P
    Janz, S
    Xu, DX
    Lamontagne, B
    Delâge, A
    Tanev, S
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (1-4) : 13 - 15
  • [10] Titanium Dioxide Waveguide Based Inverse Adiabatic Taper Coupler for Fiber-to-Chip Coupling
    Mukit, M.
    Mamun, M.
    Stabile, R.
    Calabretta, N.
    [J]. 2021 INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2021, : 101 - 102