Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma

被引:15
|
作者
Huang, Wenhua [1 ]
Shang, Qixin [1 ]
Xiao, Xin [1 ]
Zhang, Hanlu [1 ]
Gu, Yimin [1 ]
Yang, Lin [1 ]
Shi, Guidong [1 ]
Yang, Yushang [1 ]
Hu, Yang [1 ]
Yuan, Yong [1 ]
Ji, Aifang [2 ]
Chen, Longqi [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Thorac Surg, Chengdu 610041, Peoples R China
[2] Changzhi Med Univ, Heping Hosp, 161 Jiefang East St, Changzhi 046000, Peoples R China
关键词
Esophageal squamous cell carcinoma; Raman spectroscopy; Classification; Machine learning; Diagnosis; SPECTRA; CANCER; DIAGNOSIS; IDENTIFICATION; DYSPLASIA;
D O I
10.1016/j.saa.2022.121654
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Early diagnosis of esophageal squamous cell carcinoma (ESCC), a common malignant tumor with a low overall survival rate due to metastasis and recurrence, is critical for effective treatment and improved prognosis. Raman spectroscopy, an advanced detection technology for esophageal cancer, was developed to improve diagnosis sensitivity, specificity, and accuracy. This study proposed a novel, effective, and noninvasive Raman spectros-copy technique to differentiate and classify ESCC cell lines. Seven ESCC cell lines and tissues of an ESCC patient with staging of T3N1M0 and T3N2M0 at low and high differentiation levels were investigated through Raman spectroscopy. Raman spectral data analysis was performed with four machine learning algorithms, namely principal components analysis (PCA)- linear discriminant analysis (LDA), PCA-eXtreme gradient boosting (XGB), PCA- support vector machine (SVM), and PCA- (LDA, XGB, SVM)-stacked Gradient Boosting Machine (GBM). Four machine learning algorithms were able to classifiy ESCC cell subtypes from normal esophageal cells. The PCA-XGB model achieved an overall predictive accuracy of 85% for classifying ESCC and adjacent tissues. Moreover, an overall predictive accuracy of 90.3% was achieved in distinguishing low differentiation and high differentiation ESCC tissues with the same stage when PCA-LDA, XGM, and SVM models were combined. This study illustrated the Raman spectral traits of ESCC cell lines and esophageal tissues related to clinical patho-logical diagnosis. Future studies should investigate the role of Raman spectral features in ESCC pathogenesis.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Classification of Esophageal Adenocarcinoma, Esophageal Squamous Cell Carcinoma, and Stomach Adenocarcinoma Based on Machine Learning Algorithms
    Chen, Xiaoping
    Zheng, Lihui
    Yao, Jianqi
    Yang, Cheng-Fu
    SENSORS AND MATERIALS, 2021, 33 (08) : 2639 - 2654
  • [2] Raman spectroscopy and machine learning for the classification of breast cancers
    Zhang, Lihao
    Li, Chengjian
    Peng, Di
    Yi, Xiaofei
    He, Shuai
    Liu, Fengxiang
    Zheng, Xiangtai
    Huang, Wei E.
    Zhao, Liang
    Huang, Xia
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 264
  • [3] Garlic bulb classification by combining Raman spectroscopy and machine learning
    Wang, Zhixin
    Li, Chenming
    Wang, Zhong
    Li, Yuee
    Hu, Bin
    VIBRATIONAL SPECTROSCOPY, 2023, 125
  • [4] Classification and Recognition of Lilies Based on Raman Spectroscopy and Machine Learning
    Wang Zhi-xin
    Wang Hui-hui
    Zhang Wen-bo
    Wang Zhong
    Li Yue-e
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (01) : 183 - 189
  • [5] Raman spectroscopy for esophageal tumor diagnosis and delineation using machine learning and the portable Raman spectrometer
    Yang, Junqing
    Xu, Pei
    Wu, Siyi
    Chen, Zhou
    Fang, Shiyan
    Xiao, Haibo
    Hu, Fengqing
    Jiang, Lianyong
    Wang, Lei
    Mo, Bin
    Ding, Fangbao
    Lin, Linley Li
    Ye, Jian
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 317
  • [6] Automatic classification of Candida species using Raman spectroscopy and machine learning
    Gabriela Fernandez-Manteca, Maria
    Ocampo-Sosa, Alain A.
    Ruiz de Alegria-Puig, Carlos
    Pia Roiz, Maria
    Rodriguez-Grande, Jorge
    Madrazo, Fidel
    Calvo, Jorge
    Rodriguez-Cobo, Luis
    Miguel Lopez-Higuera, Jose
    Carmen Farinas, Maria
    Cobo, Adolfo
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 290
  • [7] Raman Spectroscopy and Machine Learning for Microplastics Identification and Classification in Water Environments
    Luo, Yinlong
    Su, Wei
    Xu, Xiaobin
    Xu, Dewen
    Wang, Zhenfeng
    Wu, Hong
    Chen, Bingyan
    Wu, Jian
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2023, 29 (04)
  • [8] Using Machine Learning for Classification of Cancer Cells from Raman Spectroscopy
    Aversano, Lerina
    Bernardi, Mario Luca
    Calgano, Vincenzo
    Cimitile, Marta
    Esposito, Concetta
    Iammarino, Martina
    Pisco, Marco
    Spaziani, Sara
    Verdone, Chiara
    DELTA: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON DEEP LEARNING THEORY AND APPLICATIONS, 2022, : 15 - 24
  • [9] Classification and Recognition of Disposable Masks Based on Raman Spectroscopy and Machine Learning
    Liu Jinkun
    Li Chunyu
    Lu Hang
    Kong Weigang
    Sun Wei
    Zhang Gefei
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)
  • [10] Machine learning tools formineral recognition and classification from Raman spectroscopy
    Carey, C.
    Boucher, T.
    Mahadevan, S.
    Bartholomew, P.
    Dyar, M. D.
    JOURNAL OF RAMAN SPECTROSCOPY, 2015, 46 (10) : 894 - 903