Spatio-temporal joint aberrance suppressed correlation filter for visual tracking

被引:11
|
作者
Xu, Libin [1 ]
Kim, Pyoungwon [2 ]
Wang, Mengjie [1 ]
Pan, Jinfeng [1 ]
Yang, Xiaomin [3 ]
Gao, Mingliang [1 ]
机构
[1] Shandong Univ Technol, Sch Elect & Elect Engn, Zibo 255000, Peoples R China
[2] Incheon Natl Univ, Coll Educ, Incheon 22012, South Korea
[3] Sichuan Univ, Sch Elect & Informat, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual tracking; Correlation filter; Spatio-temporal constraint; Aberrance suppression; OBJECT TRACKING;
D O I
10.1007/s40747-021-00544-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The discriminative correlation filter (DCF)-based tracking methods have achieved remarkable performance in visual tracking. However, the existing DCF paradigm still suffers from dilemmas such as boundary effect, filter degradation, and aberrance. To address these problems, we propose a spatio-temporal joint aberrance suppressed regularization (STAR) correlation filter tracker under a unified framework of response map. Specifically, a dynamic spatio-temporal regularizer is introduced into the DCF to alleviate the boundary effect and filter degradation, simultaneously. Meanwhile, an aberrance suppressed regularizer is exploited to reduce the interference of background clutter. The proposed STAR model is effectively optimized using the alternating direction method of multipliers (ADMM). Finally, comprehensive experiments on TC128, OTB2013, OTB2015 and UAV123 benchmarks demonstrate that the STAR tracker achieves compelling performance compared with the state-of-the-art (SOTA) trackers.
引用
收藏
页码:3765 / 3777
页数:13
相关论文
共 50 条
  • [1] Spatio-temporal joint aberrance suppressed correlation filter for visual tracking
    Libin Xu
    Pyoungwon Kim
    Mengjie Wang
    Jinfeng Pan
    Xiaomin Yang
    Mingliang Gao
    Complex & Intelligent Systems, 2022, 8 : 3765 - 3777
  • [2] Aberrance suppressed spatio-temporal correlation filters for visual object tracking
    Elayaperumal, Dinesh
    Joo, Young Hoon
    PATTERN RECOGNITION, 2021, 115
  • [3] Learning spatio-temporal correlation filter for visual tracking
    Yan, Youmin
    Guo, Xixian
    Tang, Jin
    Li, Chenglong
    Wang, Xin
    NEUROCOMPUTING, 2021, 436 : 273 - 282
  • [4] Object Tracking Based on a Time-Varying Spatio-Temporal Regularized Correlation Filter With Aberrance Repression
    Wang, Junnan
    Jia, Zhenhong
    Lai, Huicheng
    Yang, Jie
    Kasabov, Nikola K.
    IEEE PHOTONICS JOURNAL, 2022, 14 (06):
  • [5] Joint spatio-temporal modeling for visual tracking
    Sun, Yumei
    Tang, Chuanming
    Luo, Hui
    Li, Qingqing
    Peng, Xiaoming
    Zhang, Jianlin
    Li, Meihui
    Wei, Yuxing
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [6] Spatio-Temporal Discriminative Correlation Filter Based Object Tracking
    Xu, Zheng
    Zhu, Songhao
    Sun, Peng
    Guo, Wenbo
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 5284 - 5288
  • [7] Joint Spatio-Temporal Similarity and Discrimination Learning for Visual Tracking
    Liang, Yanjie
    Chen, Haosheng
    Wu, Qiangqiang
    Xia, Changqun
    Li, Jia
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7284 - 7300
  • [8] Spatio-Temporal Context, Correlation Filter and Measurement Estimation Collaboration Based Visual Object Tracking
    Mehmood, Khizer
    Jalil, Abdul
    Ali, Ahmad
    Khan, Baber
    Murad, Maria
    Cheema, Khalid Mehmood
    Milyani, Ahmad H.
    SENSORS, 2021, 21 (08)
  • [9] Visual object tracking using sparse context-aware spatio-temporal correlation filter
    Elayaperumal, Dinesh
    Joo, Young Hoon
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 70
  • [10] Robust Spatio-temporal Context Tracking Algorithm Based on Correlation Filter
    Wan, Hao
    Li, Weiguang
    Cui, Junkuan
    Liu, Quanquan
    Wang, Chunbao
    Duan, Lihong
    2018 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SAFETY FOR ROBOTICS (ISR), 2018, : 545 - 550