Ferrimagnetic Iron Sulfide Formation and Methane Venting Across the Paleocene-Eocene Thermal Maximum in Shallow Marine Sediments, Ancient West Siberian Sea

被引:29
|
作者
Rudmin, Maxim [1 ]
Roberts, Andrew P. [2 ]
Horng, Chorng-Shern [3 ]
Mazurov, Aleksey [1 ]
Savinova, Olesya [1 ]
Ruban, Aleksey [1 ]
Kashapov, Roman [1 ]
Veklich, Maxim [4 ]
机构
[1] Tomsk Polytech Univ, Inst Nat Resources, Dept Geol & Mineral Explorat, Tomsk, Russia
[2] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT, Australia
[3] Acad Sinica, Inst Earth Sci, Taipei, Taiwan
[4] Tomsk Oil & Gas Res & Design Inst, Tomsk, Russia
来源
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS | 2018年 / 19卷 / 01期
基金
澳大利亚研究理事会;
关键词
pyrrhotite; greigite; siderite; methane; diagenesis; sulfate reduction; anaerobic oxidation of methane; PETM; Paleocene; Eocene; Western Siberia; Bakchar deposit; CARBON-ISOTOPE EXCURSION; TURONIAN ANOXIC EVENT; ANAEROBIC OXIDATION; DIAGENETIC FORMATION; OCEAN ACIDIFICATION; FRAMBOIDAL PYRITE; ORGANIC-MATTER; NORTH-ATLANTIC; GREIGITE; HYDRATE;
D O I
10.1002/2017GC007208
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Authigenesis of ferrimagnetic iron sulfide minerals (greigite and monoclinic pyrrhotite) occurred across the Paleocene-Eocene Thermal Maximum (PETM) within the Bakchar oolitic ironstone in southeastern Western Siberia. Co-occurrence of these minerals is associated with diagenetic environments that support anaerobic oxidation of methane, which has been validated by methane fluid inclusion analysis in the studied sediments. In modern settings, such ferrimagnetic iron sulfide formation is linked to upward methane diffusion in the presence of minor dissolved sulfide ions. The PETM was the most extreme Cenozoic global warming event and massive methane mobilization has been proposed as a major contributor to the globally observed warming and carbon isotope excursion associated with the PETM. The studied sediments provide rare direct evidence for methane mobilization during the PETM. Magnetic iron sulfide formation associated with methanogenesis in the studied sediments can be explained by enhanced local carbon burial across the PETM. While there is no strong evidence to link local methane venting with more widespread methane mobilization and global warming, the magnetic, petrographic, and geochemical approach used here is applicable to identifying authigenic minerals that provide telltale signatures of methane mobility that can be used to assess methane formation and mobilization through the PETM and other hyperthermal climatic events.
引用
收藏
页码:21 / 42
页数:22
相关论文
共 11 条
  • [1] Deep-sea redox across the Paleocene-Eocene thermal maximum
    Paelike, Cecily
    Delaney, Margaret L.
    Zachos, James C.
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2014, 15 (04) : 1038 - 1053
  • [2] Shallow marine ecosystem collapse and recovery during the Paleocene-Eocene Thermal Maximum
    Tian, Skye Yunshu
    Yasuhara, Moriaki
    Huang, Huai-Hsuan M.
    Condamine, Fabien L.
    Robinson, Marci M.
    [J]. GLOBAL AND PLANETARY CHANGE, 2021, 207
  • [3] Little lasting impact of the Paleocene-Eocene Thermal Maximum on shallow marine molluscan faunas
    Ivany, Linda C.
    Pietsch, Carlie
    Handley, John C.
    Lockwood, Rowan
    Allmon, Warren D.
    Sessa, Jocelyn A.
    [J]. SCIENCE ADVANCES, 2018, 4 (09):
  • [4] Unraveling the Paleocene-Eocene thermal maximum in shallow marine Tethyan environments: the Tunisian stratigraphic record
    Stassen, Peter
    Dupuis, Christian
    Steurbaut, Etienne
    Yans, Johan
    Storme, Jean-Yves
    Morsi, Abdel-Mohsen
    Lacumin, Paola
    Speijer, Robert P.
    [J]. NEWSLETTERS ON STRATIGRAPHY, 2013, 46 (01) : 69 - 91
  • [5] Shallow marine ostracode turnover in response to environmental change during the Paleocene-Eocene thermal maximum in northwest Tunisia
    Morsi, Abdel-Mohsen M.
    Speijer, Robert P.
    Stassen, Peter
    Steurbaut, Etienne
    [J]. JOURNAL OF AFRICAN EARTH SCIENCES, 2011, 59 (2-3) : 243 - 268
  • [6] Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA
    Self-Trail, Jean M.
    Robinson, Marci M.
    Bralower, Timothy J.
    Sessa, Jocelyn A.
    Hajek, Elizabeth A.
    Kump, Lee R.
    Trampush, Sheila M.
    Willard, Debra A.
    Edwards, Lucy E.
    Powars, David S.
    Wandless, Gregory A.
    [J]. PALEOCEANOGRAPHY, 2017, 32 (07): : 710 - 728
  • [7] The Paleocene-Eocene thermal maximum (PETM) in shallow-marine successions of the Adriatic carbonate platform (SW Slovenia)
    Zamagni, Jessica
    Mutti, Maria
    Ballato, Paolo
    Kosir, Adrijan
    [J]. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2012, 124 (7-8) : 1071 - 1086
  • [8] Discovery of the Paleocene-Eocene Thermal Maximum in shallow-marine sediments of the Xigaze forearc basin, Tibet: A record of enhanced extreme precipitation and siliciclastic sediment flux
    Jiang, Jingxin
    Hu, Xiumian
    Li, Juan
    BouDagher-Fadel, Marcelle
    Garzanti, Eduardo
    [J]. PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2021, 562
  • [9] RESPONSE OF MARINE ECOSYSTEMS TO DEEP-TIME GLOBAL WARMING: A SYNTHESIS OF BIOTIC PATTERNS ACROSS THE PALEOCENE-EOCENE THERMAL MAXIMUM (PETM)
    Speijer, Robert P.
    Scheibner, Christian
    Stassen, Peter
    Morsi, Abdel-Mohsen M.
    [J]. AUSTRIAN JOURNAL OF EARTH SCIENCES, 2012, 105 (01): : 6 - 16
  • [10] Stratigraphic expression of the Paleocene-Eocene Thermal Maximum climate event during long-lived transient uplift-An example from a shallow to deep-marine clastic system in the Norwegian Sea
    Somme, Tor O.
    Huwe, Simone Isabelle
    Martinsen, Ole J.
    Sandbakken, Pal Trygve
    Skogseid, Jakob
    Valore, Lucas A.
    [J]. FRONTIERS IN EARTH SCIENCE, 2023, 11