SMAT: An Attention-Based Deep Learning Solution to the Automation of Schema Matching

被引:4
|
作者
Zhang, Jing [1 ]
Shin, Bonggun [2 ]
Choi, Jinho D. [1 ]
Ho, Joyce C. [1 ]
机构
[1] Emory Univ, Atlanta, GA 30329 USA
[2] Deargen Inc, Seoul, South Korea
基金
美国国家科学基金会;
关键词
Schema-level matching; Natural language processing; Attention over attention;
D O I
10.1007/978-3-030-82472-3_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Schema matching aims to identify the correspondences among attributes of database schemas. It is frequently considered as the most challenging and decisive stage existing in many contemporary web semantics and database systems. Low-quality algorithmic matchers fail to provide improvement while manually annotation consumes extensive human efforts. Further complications arise from data privacy in certain domains such as healthcare, where only schema-level matching should be used to prevent data leakage. For this problem, we propose SMAT, a new deep learning model based on state-of-the-art natural language processing techniques to obtain semantic mappings between source and target schemas using only the attribute name and description. SMAT avoids directly encoding domain knowledge about the source and target systems, which allows it to be more easily deployed across different sites. We also introduce a new benchmark dataset, OMAP, based on real-world schema-level mappings from the healthcare domain. Our extensive evaluation of various benchmark datasets demonstrates the potential of SMAT to help automate schema-level matching tasks.
引用
收藏
页码:260 / 274
页数:15
相关论文
共 50 条
  • [1] Attention-Based Personalized Compatibility Learning for Fashion Matching
    Nie, Xiaozhe
    Xu, Zhijie
    Zhang, Jianqin
    Tian, Yu
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [2] Attention-based Deep Learning for Visual Servoing
    Wang, Bo
    Li, Yuan
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4388 - 4393
  • [3] Attention-Based Ensemble for Deep Metric Learning
    Kim, Wonsik
    Goyal, Bhavya
    Chawla, Kunal
    Lee, Jungmin
    Kwon, Keunjoo
    [J]. COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 760 - 777
  • [4] Attention-based Deep Multiple Instance Learning
    Ilse, Maximilian
    Tomczak, Jakub M.
    Welling, Max
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [5] Attention-based Deep Learning for Network Intrusion Detection
    Guo, Naiwang
    Tian, Yingjie
    Li, Fan
    Yang, Hongshan
    [J]. 2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [6] Attention-based learning
    Kasderidis, S
    Taylor, JG
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 525 - 530
  • [7] Attention-based multimodal image matching
    Moreshet, Aviad
    Keller, Yosi
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 241
  • [8] Generalized attention-based deep multi-instance learning
    Lu Zhao
    Liming Yuan
    Kun Hao
    Xianbin Wen
    [J]. Multimedia Systems, 2023, 29 : 275 - 287
  • [9] Generalized attention-based deep multi-instance learning
    Zhao, Lu
    Yuan, Liming
    Hao, Kun
    Wen, Xianbin
    [J]. MULTIMEDIA SYSTEMS, 2023, 29 (01) : 275 - 287
  • [10] Attention-Based Deep Reinforcement Learning for Edge User Allocation
    Chang, Jiaxin
    Wang, Jian
    Li, Bing
    Zhao, Yuqi
    Li, Duantengchuan
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (01): : 590 - 604