Sharp weighted bounds for one-sided maximal operators

被引:12
|
作者
Martin-Reyes, Francisco J. [1 ]
de la Torre, Alberto [1 ]
机构
[1] Univ Malaga, Fac Ciencias, Dept Anal Matemat, E-29071 Malaga, Spain
关键词
Weighted inequalities; One-sided maximal operator; Sharp bounds; INEQUALITIES; SPACES;
D O I
10.1007/s13348-015-0132-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we prove some results about the best constants for the boundedness of the one-sided Hardy-Littlewood maximal operator in , where is a locally finite Borel measure, that in the two-sided weights have been obtained by Buckley (Trans Am Math Soc 340(1):253-272, 1993) and more recently by Hytonen and P,rez (Anal PDE 6(4):777-818, 2013) and Hytonen et al. (J Funct Anal 263(12):3883-3899, 2012). To prove Bucley's theorem for one-sided maximal operators, we follow the ideas of Lerner (Proc Am Math Soc 136(8):2829-2833, 2008). To obtain a better estimate in terms of mixed constants we follow the steps in Hytonen and P,rez (Anal PDE 6(4):777-818, 2013) and Hytonen et al. (J Funct Anal 263(12):3883-3899, 2012) i.e., (a) getting a sharp estimate for the constant for the weak type type, in terms of the one-sided constant, (b) obtaining a sharp reverse Holder inequality and (c) using Marcinkiewicz interpolation theorem. Our proofs of these facts are different from those in Hytonen and P,rez (Anal PDE 6(4):777-818, 2013) and Hytonen et al. (J Funct Anal 263(12):3883-3899, 2012) and apply to more general measures.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 50 条
  • [1] Sharp weighted bounds for one-sided maximal operators
    Francisco J. Martín-Reyes
    Alberto de la Torre
    [J]. Collectanea Mathematica, 2015, 66 : 161 - 174
  • [2] Sharp weighted bounds for one-sided operators
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Zaighum, Muhammad Asad
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2017, 24 (02) : 227 - 240
  • [3] Sharp Bounds for Fractional One-sided Operators
    María Silvina RIVEROS
    Raúl Emilio VIDAL
    [J]. Acta Mathematica Sinica,English Series, 2016, (11) : 1255 - 1278
  • [4] Sharp bounds for fractional One-sided operators
    Silvina Riveros, Maria
    Emilio Vidal, Raul
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (11) : 1255 - 1278
  • [5] Sharp bounds for fractional one-sided operators
    María Silvina Riveros
    Raúl Emilio Vidal
    [J]. Acta Mathematica Sinica, English Series, 2016, 32 : 1255 - 1278
  • [6] Sharp Bounds for Fractional One-sided Operators
    María Silvina RIVEROS
    Raúl Emilio VIDAL
    [J]. ActaMathematicaSinica, 2016, 32 (11) : 1255 - 1278
  • [7] Weighted inequalities for the one-sided geometric maximal operators
    Ortega Salvador, Pedro
    Ramirez Torreblanca, Consuelo
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (11-12) : 1515 - 1522
  • [8] Some weighted inequalities for general one-sided maximal operators
    MartinReyes, FJ
    delaTorre, A
    [J]. STUDIA MATHEMATICA, 1997, 122 (01) : 1 - 14
  • [9] A Weighted Weak-Type Inequality for One-Sided Maximal Operators
    J. Wang
    Y. Ren
    E. Zhang
    [J]. Ukrainian Mathematical Journal, 2023, 75 : 817 - 826
  • [10] A WEIGHTED WEAK-TYPE INEQUALITY FOR ONE-SIDED MAXIMAL OPERATORS
    Wang, J.
    Ren, Y.
    Zhang, E.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (5) : 817 - 826