f(R, T) gravity

被引:1943
|
作者
Harko, Tiberiu [1 ,2 ]
Lobo, Francisco S. N. [3 ]
Nojiri, Shin'ichi [4 ,5 ]
Odintsov, Sergei D. [6 ,7 ,8 ]
机构
[1] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China
[3] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal
[4] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan
[5] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Nagoya, Aichi 4648602, Japan
[6] ICREA, E-08193 Bellaterra, Barcelona, Spain
[7] Inst Ciencies Espai IEEC CSIC, Fac Ciencies, E-08193 Bellaterra, Barcelona, Spain
[8] Tomsk State Pedag Univ, Tomsk, Russia
来源
PHYSICAL REVIEW D | 2011年 / 84卷 / 02期
关键词
F R GRAVITY; COSMOLOGICAL CONSTANT; DARK ENERGY; ROTATION CURVES; MATTER; EQUIVALENCE; CONSTRAINTS; INFLATION; PRINCIPLE; VIABILITY;
D O I
10.1103/PhysRevD.84.024020
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider f(R, T) modified theories of gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T. We obtain the gravitational field equations in the metric formalism, as well as the equations of motion for test particles, which follow from the covariant divergence of the stress-energy tensor. Generally, the gravitational field equations depend on the nature of the matter source. The field equations of several particular models, corresponding to some explicit forms of the function f(R, T), are also presented. An important case, which is analyzed in detail, is represented by scalar field models. We write down the action and briefly consider the cosmological implications of the f(R, T-phi) models, where T-phi is the trace of the stress-energy tensor of a self-interacting scalar field. The equations of motion of the test particles are also obtained from a variational principle. The motion of massive test particles is nongeodesic, and takes place in the presence of an extra-force orthogonal to the four velocity. The Newtonian limit of the equation of motion is further analyzed. Finally, we provide a constraint on the magnitude of the extra acceleration by analyzing the perihelion precession of the planet Mercury in the framework of the present model.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Gravastars in f (R, T, RμνTμν) gravity
    Yousaf, Z.
    Bhatti, M. Z.
    Asad, H.
    [J]. PHYSICS OF THE DARK UNIVERSE, 2020, 28
  • [2] Gravitational waves in f(R, T) and f(R, Tφ) theories of gravity
    Alves, M. E. S.
    Moraes, P. H. R. S.
    de Araujo, J. C. N.
    Malheiro, M.
    [J]. PHYSICAL REVIEW D, 2016, 94 (02)
  • [3] Energy conditions in f (R, T, RμνTμν) gravity
    Sharif, M.
    Zubair, M.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12):
  • [4] Inflation in f(R, T) gravity
    Snehasish Bhattacharjee
    J. R. L. Santos
    P. H. R. S. Moraes
    P. K. Sahoo
    [J]. The European Physical Journal Plus, 135
  • [5] Charged gravastars in f(R, T, RμνTμν) gravity
    Yousaf, Z.
    Bhatti, M. Z.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2021, 30 (11):
  • [6] Unimodular f(R,T) gravity
    Rajabi, Fateme
    Nozari, Kourosh
    [J]. PHYSICAL REVIEW D, 2017, 96 (08)
  • [7] Comment on "f(R,T) gravity"
    Barrientos, Jose O.
    Rubilar, Guillermo F.
    [J]. PHYSICAL REVIEW D, 2014, 90 (02):
  • [8] Reexamining f (R, T) gravity
    Fisher, Sarah B.
    Carlson, Eric D.
    [J]. PHYSICAL REVIEW D, 2019, 100 (06)
  • [9] Energy conditions in f (R, T, RμνTμν) gravity
    M. Sharif
    M. Zubair
    [J]. Journal of High Energy Physics, 2013
  • [10] f(R, S, T) Gravity
    Bakry, M. A.
    Ibraheem, Shymaa K. K.
    [J]. GRAVITATION & COSMOLOGY, 2023, 29 (01): : 19 - 32