Use of ETM plus images to extend stem volume estimates obtained from LiDAR data

被引:19
|
作者
Maselli, Fabio [1 ]
Chiesi, Marta [1 ]
Montaghi, Alessandro [2 ]
Pranzini, Enzo [3 ]
机构
[1] IBIMET CNR, I-50019 Sesto Fiorentino, FI, Italy
[2] Univ Florence, DISTAF, I-50145 Florence, Italy
[3] Univ Florence, Dipartimento Sci Terra, I-50121 Florence, Italy
关键词
Stem volume; LiDAR; Landsat ETM; k-NN; Local regression; FOREST INVENTORY; WEIGHTED REGRESSION; FOOTPRINT LIDAR; CANOPY HEIGHT; GROWING STOCK; BIOMASS; INTEGRATION; PARAMETERS; VARIABLES; SUPPORT;
D O I
10.1016/j.isprsjprs.2011.04.007
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Airborne LiDAR techniques can provide accurate measurements of tree height, from which estimates of stem volume and forest woody biomass can be obtained. These techniques, however, are still expensive to apply repeatedly over large areas. The current paper presents a methodology which first transforms mean stand heights obtained from LiDAR over small strips into relevant stem volume estimates. These are then extended over an entire forest by applying two estimation methods (k-NN and locally calibrated regression) to Landsat ETM+ images. The methodology is tested over a coastal area covered by pine forest in the Regional Park of San Rossore (Central Italy). The results are evaluated by comparison with the ground stem volumes of a recent forest inventory, taking into consideration the effect of stand size. In general, the accuracies of two estimation methods are dependent on the size of the forest stands and are satisfactory only when considering stands larger than 5-10 ha. The outputs of the parametric regression procedure are slightly more stable than those of k-NN and more faithfully reproduce the spatial patterns of the ground data. (C) 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:662 / 671
页数:10
相关论文
共 50 条
  • [1] Integration of lidar and Landsat ETM plus data for estimating and mapping forest canopy height
    Hudak, AT
    Lefsky, MA
    Cohen, WB
    Berterretche, M
    REMOTE SENSING OF ENVIRONMENT, 2002, 82 (2-3) : 397 - 416
  • [2] Estimating basal area and stem volume for individual trees from lidar data
    Chen, Qi
    Gong, Peng
    Baldocchi, Dennis
    Tian, Yong Q.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2007, 73 (12): : 1355 - 1365
  • [3] A method for lake water table and volume estimation using Landsat TM/ETM plus images
    Rusuli, Y.
    Li, L. H.
    Sidik, H.
    Mamathan, M.
    Rahman, A.
    WATER RESOURCES AND ENVIRONMENT, 2016, : 131 - 135
  • [4] Use of Landsat ETM plus data for detection of potential areas for afforestation
    Bhagat, V. S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (10) : 2607 - 2617
  • [5] Using LiDAR to compare forest height estimates from IKONOS and Landsat ETM+ data in Sitka spruce plantation forests
    Donoghue, D. N. M.
    Watt, P. J.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (11) : 2161 - 2175
  • [6] Estimation of aboveground forest biomass in Galicia (NW Spain) by the combined use of LiDAR, LANDSAT ETM plus and National Forest Inventory data
    Jimenez, Enrique
    Vega, Jose A.
    Fernandez-Alonso, Jose M.
    Vega-Nieva, Daniel
    Ortiz, Luis
    Lopez-Serrano, Pablito M.
    López-Sánchez, Carlos A.
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2017, 10 : 590 - 596
  • [7] Modelling forest stand volume and tree density using Landsat ETM plus data
    Mohammadi, J.
    Joibary, Shaban Shataee
    Yaghmaee, F.
    Mahiny, A. S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (11) : 2959 - 2975
  • [8] Characterizing peatland carbon balance estimates using freely available Landsat ETM plus data
    Crichton, K. A.
    Anderson, K.
    Bennie, J. J.
    Milton, E. J.
    ECOHYDROLOGY, 2015, 8 (03) : 493 - 503
  • [9] Monitoring prairie wet area with an integrated LANDSAT ETM plus , RADARSAT-1 SAR and ancillary data from LIDAR
    Gala, T. S.
    Melesse, A. M.
    CATENA, 2012, 95 : 12 - 23
  • [10] Use of calibration to improve the precision of estimates obtained from All of Us data
    Wang, Vivian Hsing-Chun
    Holm, Julie
    Pagan, Jose A.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (12) : 2985 - 2988