Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces

被引:179
|
作者
Gómez-Suárez, C [1 ]
Busscher, HJ [1 ]
van der Mei, HC [1 ]
机构
[1] Univ Groningen, Dept Biomed Engn, NL-9713 AV Groningen, Netherlands
关键词
D O I
10.1128/AEM.67.6.2531-2537.2001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A theoretical analysis of the detachment of bacteria adhering to substratum surfaces upon the passage of an air-liquid interface is given, together with experimental results for bacterial detachment in the absence and presence of a conditioning film on different substratum surfaces. Bacteria (Streptococcus sobrinus HG1025, Streptococcus oralis J22, Actinomyces naeslundii T14V-J1, Bacteroides fragilis 793E, and Pseudomonas aeruginosa 974K) were first allowed to adhere to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in a parallel-plate flow chamber until a density of 4 x 10(6) cells cm(-2) was reached. For S. sobrinus HG1025, S, oralis J22, and A. naeslundii T14V-J1, the conditioning film consisted of adsorbed salivary components, while for S, fragilis 793E and P. aeruginosa 974K, the film consisted of adsorbed human plasma components, Subsequently, air bubbles were passed through the Row chamber and the bacterial detachment percentages were measured. For some experimental conditions, like with P. aeruginosa 974K adhering to DDS-coated glass and an air bubble moving at high velocity (i.e., 13.6 mm s(-1)), no bacteria detached upon passage of an air-liquid interface, while for others, detachment percentages between 80 and 90% were observed, The detachment percentage increased when the velocity of the passing air bubble decreased, regardless of the bacterial strain and substratum surface hydrophobicity involved, However, the variation in percentages of detachment by a passing air bubble depended greatly upon the strain and substratum surface involved. At low air bubble velocities the hydrophobicity of the substratum had no influence on the detachment, but at high air bubble velocities all bacterial strains were more efficiently detached from hydrophilic glass substrata, Furthermore, the presence of a conditioning film could either inhibit or stimulate detachment, The shape of the bacterial cell played a major role in detachment at high air bubble velocities, and spherical strains (i.e., streptococci) detached more efficiently than rod-shaped organisms. The present results demonstrate that methodologies to study bacterial adhesion which include contact with a moving air-liquid interface (i.e., rinsing and dipping) yield detachment of an unpredictable number of adhering microorganisms. Hence, results of studies based on such methodologies should be referred as "bacterial retention" rather than "bacterial adhesion".
引用
收藏
页码:2531 / 2537
页数:7
相关论文
共 50 条
  • [1] Detachment Force of Particles from Air-Liquid Interfaces of Films and Bubbles
    Ally, Javed
    Kappl, Michael
    Butt, Hans-Juergen
    Amirfazli, A.
    LANGMUIR, 2010, 26 (23) : 18135 - 18143
  • [2] Amphiphiles at air-liquid interfaces
    Bermudez, Harry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [3] Potential differences at air-liquid interfaces
    Williams, JW
    Vigfusson, VA
    JOURNAL OF PHYSICAL CHEMISTRY, 1931, 35 (01): : 345 - 353
  • [4] From nucleation to engineering of crystalline architectures at air-liquid interfaces
    Rapaport, H
    Kuzmenko, I
    Berfeld, M
    Kjaer, K
    Als-Nielsen, J
    Popovitz-Biro, R
    Weissbuch, I
    Lahav, M
    Leiserowitz, L
    JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (07): : 1399 - 1428
  • [5] MONOLAYERS OF ADIPATE POLYESTERS AT AIR-LIQUID INTERFACES
    LEE, WM
    SHERESHEFSKY, JL
    STROMBERG, RR
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION A-PHYSICS AND CHEMISTRY, 1962, 66 (05): : 439 - +
  • [6] A debubbler for microfluidics utilizing air-liquid interfaces
    Cheng, Daming
    Jiang, Hongrui
    APPLIED PHYSICS LETTERS, 2009, 95 (21)
  • [7] Removal of colloidal particles from quartz collector surfaces as stimulated by the passage of liquid-air interfaces
    Suárez, CG
    Noordmans, J
    van der Mei, HC
    Busscher, HJ
    LANGMUIR, 1999, 15 (15) : 5123 - 5127
  • [8] Self-assembly of surfactants at air-liquid interfaces
    Khan, Md. Rubel
    Premadasa, Uvinduni
    Kotturi, Kondalarao
    Masson, Eric
    Cimatu, Katherine
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [9] Role of conductivity in the electrohydrodynamic patterning of air-liquid interfaces
    Gambhire, P.
    Thaokar, R. M.
    PHYSICAL REVIEW E, 2012, 86 (03)
  • [10] Adhesion of Particles with Sharp Edges to Air-Liquid Interfaces
    Ally, Javed
    Kappl, Michael
    Butt, Hans-Juergen
    LANGMUIR, 2012, 28 (30) : 11042 - 11047