Regularity and separation from potential barriers for a non-local phase-field system

被引:25
|
作者
Londen, Stig-Olof [2 ]
Petzeltova, Hana [1 ]
机构
[1] Inst Math AV CR, Prague 11567 1, Czech Republic
[2] Aalto Univ, Sch Sci & Technol, Helsinki 02015, Finland
关键词
Non-local phase-field systems; Regularity of solutions; Separation property; Convergence to equilibria; CAHN-HILLIARD EQUATION; CONVERGENCE; MODEL;
D O I
10.1016/j.jmaa.2011.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that solutions of a two-phase model involving a non-local interactive term become more regular immediately after the moment they separate from the pure phases. This result allows us to prove stronger convergence to equilibria. A new proof of the separation property is also given. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:724 / 735
页数:12
相关论文
共 50 条
  • [1] CONVERGENCE OF SOLUTIONS OF A NON-LOCAL PHASE-FIELD SYSTEM
    Londen, Stig-Olof
    Petzeltova, Hana
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (03): : 653 - 670
  • [2] Convergence of solutions of a non-local phase-field system with memory
    Petzeltová, H
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 663 - 665
  • [3] A phase field model with non-local and anisotropic potential
    Chen, Xinfu
    Caginalp, Gunduz
    Esenturk, Emre
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2011, 19 (04)
  • [4] Non-local temperature-dependent phase-field models for non-isothermal phase transitions
    Krejci, Pavel
    Rocca, Elisabetta
    Sprekels, Juegen
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 76 : 197 - 210
  • [5] Non-local phase field revisited
    Mauri, Roberto
    Bertei, Antonio
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (06):
  • [6] Non-local effects in phase separation dynamics
    Nishiura, Y
    Ohnishi, I
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 417 - 419
  • [7] Non-local effects in phase separation dynamics
    Nishiura, Y.
    Ohnishi, I.
    (76):
  • [8] A Non-local Phase Field Model of Bohm's Quantum Potential
    Mauri, Roberto
    FOUNDATIONS OF PHYSICS, 2021, 51 (02)
  • [9] A Non-local Phase Field Model of Bohm’s Quantum Potential
    Roberto Mauri
    Foundations of Physics, 2021, 51
  • [10] Continuum-kinematics-based peridynamics and phase-field approximation of non-local dynamic fracture
    Partmann, Kai
    Wieners, Christian
    Weinberg, Kerstin
    INTERNATIONAL JOURNAL OF FRACTURE, 2023, 244 (1-2) : 187 - 200