A Posteriori Error Estimates of Triangular Mixed Finite Element Methods for Semi linear Optimal Control Problems

被引:0
|
作者
Lu, Zuliang [2 ]
Chen, Yanping [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Semilinear optimal control problems; mixed finite element methods; a posteriori error estimates; QUADRATIC OPTIMAL-CONTROL; PARABOLIC EQUATIONS; ELLIPTIC-EQUATIONS; STOKES EQUATIONS; SPECTRAL METHOD; SUPERCONVERGENCE; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods. The state and co-state are approximated by the order k <= 1 Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant element. We derive a posteriori error estimates for the coupled state and control approximations. A numerical example is presented in confirmation of the theory.
引用
收藏
页码:242 / 256
页数:15
相关论文
共 50 条