Instantons on hyperkahler manifolds

被引:1
|
作者
Devchand, Chandrashekar [1 ]
Pontecorvo, Massimiliano [2 ]
Spiro, Andrea [3 ]
机构
[1] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Potsdam, Germany
[2] Univ Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
[3] Univ Camerino, Scuola Sci & Tecnol, Via Madonna Carceri, I-62032 Camerino, Macerata, Italy
关键词
Yang-Mills theory; Instantons; Hyperkahler geometry; Harmonic space; YANG-MILLS CONNECTIONS; SELF-DUALITY; KAHLER; CONSTRUCTION; EQUATIONS; FIELDS; COMPACTNESS; GEOMETRY; COMPLEX; SPACE;
D O I
10.1007/s10231-019-00890-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An instanton (E, D) on a (pseudo-)hyperkahler manifold M is a vector bundle E associated with a principal G-bundle with a connection D whose curvature is pointwise invariant under the quaternionic structures of TxM,x is an element of M, and thus satisfies the Yang-Mills equations. Revisiting a construction of solutions, we prove a local bijection between gauge equivalence classes of instantons on M and equivalence classes of certain holomorphic functions taking values in the Lie algebra of GC defined on an appropriate SL2(C)-bundle over M. Our reformulation affords a streamlined proof of Uhlenbeck's compactness theorem for instantons on (pseudo-)hyperkahler manifolds.
引用
收藏
页码:533 / 561
页数:29
相关论文
共 50 条
  • [1] Instantons, monopoles and toric hyperKahler manifolds
    Kraan, TC
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (03) : 503 - 533
  • [2] Hyperkahler cones and instantons on quaternionic Kahler manifolds
    Devchand, Chandrashekar
    Pontecorvo, Massimiliano
    Spiro, Andrea
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 58 (03) : 291 - 323
  • [3] HYPERKAHLER MANIFOLDS
    ATIYAH, M
    [J]. LECTURE NOTES IN MATHEMATICS, 1990, 1422 : 1 - 13
  • [4] HYPERKAHLER MANIFOLDS
    HITCHIN, N
    [J]. ASTERISQUE, 1992, (206) : 137 - 166
  • [5] Hyperkahler Manifolds and Sheaves
    Huybrechts, Daniel
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 450 - 460
  • [6] A FAMILY OF HYPERKAHLER MANIFOLDS
    DANCER, AS
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1994, 45 (180): : 463 - 478
  • [7] COLLAPSING HYPERKAHLER MANIFOLDS
    Tosatti, Valentino
    Zhang, Yuguang
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (03): : 751 - 786
  • [8] Implosion for hyperkahler manifolds
    Dancer, Andrew
    Kirwan, Frances
    Swann, Andrew
    [J]. COMPOSITIO MATHEMATICA, 2013, 149 (09) : 1592 - 1630
  • [9] ALGEBRAIC STRUCTURES ON HYPERKAHLER MANIFOLDS
    Verbitsky, Misha
    [J]. MATHEMATICAL RESEARCH LETTERS, 1996, 3 (06) : 763 - 767
  • [10] Base Manifolds for Lagrangian Fibrations on Hyperkahler Manifolds
    Greb, Daniel
    Lehn, Christian
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (19) : 5483 - 5487