Infinite Covariant Density for Diffusion in Logarithmic Potentials and Optical Lattices

被引:102
|
作者
Kessler, David A. [1 ]
Barkai, Eli [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
ANOMALOUS DIFFUSION; DYNAMICS; WALKS;
D O I
10.1103/PhysRevLett.105.120602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We solve the Fokker-Planck equation for Brownian motion in a logarithmic potential. When the diffusion constant is below a critical value the solution approaches an infinite covariant density. With this non-normalizable solution we obtain the phase diagram of anomalous diffusion for this process. We briefly discuss the physical consequences for atoms in optical lattices and charges in the vicinity of long polyelectrolytes. Our work explains in what sense the infinite covariant density and not Boltzmann's equilibrium describes the long time limit of these systems.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Infinite density for cold atoms in shallow optical lattices
    Holz, Philip C.
    Dechant, Andreas
    Lutz, Eric
    EPL, 2015, 109 (02)
  • [2] DIFFUSION IN ASYMPTOTICALLY LOGARITHMIC POTENTIALS
    MIYAZAWA, T
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) : 2428 - 2433
  • [3] Density classification on infinite lattices and trees
    Busic, Ana
    Fates, Nazim
    Mairesse, Jean
    Marcovici, Irene
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 22
  • [4] Density Classification on Infinite Lattices and Trees
    Busic, Ana
    Fates, Nazim
    Mairesse, Jean
    Marcovici, Irene
    LATIN 2012: THEORETICAL INFORMATICS, 2012, 7256 : 109 - 120
  • [5] Attractors of Reaction Diffusion Systems on Infinite Lattices
    W.-J. Beyn
    S. Yu Pilyugin
    Journal of Dynamics and Differential Equations, 2003, 15 (2-3) : 485 - 515
  • [6] Arnold diffusion in Hamiltonian systems on infinite lattices
    Giuliani, Filippo
    Guardia, Marcel
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (08) : 3333 - 3426
  • [7] INTERACTING BROWNIAN MOTIONS IN INFINITE DIMENSIONS WITH LOGARITHMIC INTERACTION POTENTIALS
    Osada, Hirofumi
    ANNALS OF PROBABILITY, 2013, 41 (01): : 1 - 49
  • [8] ELECTROSTATIC POTENTIALS AND FIELDS IN INFINITE POINT-CHARGE LATTICES
    HEYES, DM
    JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (03): : 1924 - 1929
  • [9] Diffusion in infinite and semi-infinite lattices with long-range coupling
    Martinez, Alejandro J.
    Molina, Mario I.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (27)
  • [10] RANDOM-WALKS ON KEBAB LATTICES - LOGARITHMIC DIFFUSION ON ORDERED STRUCTURES
    CASSI, D
    REGINA, S
    MODERN PHYSICS LETTERS B, 1995, 9 (10): : 601 - 606