Incremental Dual-memory LSTM in Land Cover Prediction

被引:41
|
作者
Jia, Xiaowei [1 ]
Khandelwal, Ankush [1 ]
Nayak, Guruprasad [1 ]
Gerber, James [2 ]
Carlson, Kimberly [3 ]
West, Paul [2 ]
Kumar, Vipin [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Inst Environm, Minneapolis, MN 55455 USA
[3] Univ Hawaii Manoa, Dept Nat Resources & Environm Management, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
LSTM; land cover; zero-short learning;
D O I
10.1145/3097983.3098112
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Land cover prediction is essential for monitoring global environmental change. Unfortunately, traditional classification models are plagued by temporal variation and emergence of novel/unseen land cover classes in the prediction process. In this paper, we propose an LSTM-based spatio-temporal learning framework with a dual-memory structure. The dual-memory structure captures both long-term and short-term temporal variation patterns, and is updated incrementally to adapt the model to the ever-changing environment. Moreover, we integrate zero-shot learning to identify unseen classes even without labelled samples. Experiments on both synthetic and real-world datasets demonstrate the superiority of the proposed framework over multiple baselines in land cover prediction.
引用
收藏
页码:867 / 876
页数:10
相关论文
共 50 条
  • [1] Dual-Memory Model for Incremental Learning: The Handwriting Recognition Use Case
    Piot, Melanie
    Bourdoulous, Berangere
    Gonzalez, Jordan
    Deshayes, Aurelia
    Prevost, Lionel
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5527 - 5534
  • [2] The specificity of learned parallelism in dual-memory retrieval
    Strobach, Tilo
    Schubert, Torsten
    Pashler, Harold
    Rickard, Timothy
    MEMORY & COGNITION, 2014, 42 (04) : 552 - 569
  • [3] Dual Memory LSTM with Dual Attention Neural Network for Spatiotemporal Prediction
    Li, Teng
    Guan, Yepeng
    SENSORS, 2021, 21 (12)
  • [4] The specificity of learned parallelism in dual-memory retrieval
    Tilo Strobach
    Torsten Schubert
    Harold Pashler
    Timothy Rickard
    Memory & Cognition, 2014, 42 : 552 - 569
  • [5] Design and Analysis of Magnet Proportioning for Dual-Memory Machines
    Li, Fuhua
    Chau, K. T.
    Liu, Chunhua
    Jiang, J. Z.
    Wang, Winson Yong
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2012, 22 (03)
  • [6] Design Principles of Permanent Magnet Dual-Memory Machines
    Li, Fuhua
    Chau, K. T.
    Liu, Chunhua
    Zhang, Zhen
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (11) : 3234 - 3237
  • [7] A dual-memory architecture for reinforcement learning on neuromorphic platforms
    Olin-Ammentorp, Wilkie
    Sokolov, Yury
    Bazhenov, Maxim
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2021, 1 (02):
  • [8] Dual-Memory Feature Aggregation for Video Object Detection
    Fan, Diwei
    Zheng, Huicheng
    Dang, Jisheng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VI, 2024, 14430 : 220 - 232
  • [9] Reliable correlation tracking via dual-memory selection model
    Li, Guiji
    Peng, Manman
    Nai, Ke
    Li, Zhiyong
    Li, Keqin
    INFORMATION SCIENCES, 2020, 518 : 238 - 255
  • [10] Temporal relation transformer for robust visual tracking with dual-memory learning
    Nie, Guohao
    Wang, Xingmei
    Yan, Zining
    Xu, Xiaoyuan
    Liu, Bo
    APPLIED SOFT COMPUTING, 2024, 167