For environmental reasons, there are times when the use of radioactive chemical sources for density and neutron logging is not possible. The inability to use these logging tools seriously affects porosity determination in gas-bearing reservoirs. Several tools, such as the nuclear magnetic resonance (NMR) tool, the sonic tool, or a minitron-based tool, determine porosity without using a radioactive source. These tools, however, are influenced by many effects and, when used alone, cannot deliver an accurate gas-independent porosity. A new methodology that combines sonic and NMR logs for improved porosity evaluation in gas-bearing reservoirs is proposed. The first variant of the method uses the sonic compressional transit time and the total NMR porosity (Phi (t.NMR)) to determine the total porosity, corrected for the gas effect, and the flushed-zone gas saturation. In this approach, a linear time-averaged equation corrected for compaction is applied to the sonic compressional log. The simplicity of the solution, much like the previously published DMR1 Density-Magnetic Resonance interpretation Method, allows fast, easy computation and a complete error analysis to assess the quality of the results. In the second variant of the method, we show that the rigorous Gassman equation has a very similar response to the Raymer-Hunt-Gardner (RHG) equation for a water/gas mixture. This allows substitution of the complex Gassman equation by the much simpler RHG equation in the combined sonic-NMR (SMR) technique to estimate total porosity and flushed-zone gas saturation in gas-bearing formations. Both techniques are successfully applied to an offshore gas well in Australia. In this well, the porosity in the well-compacted sands is in the 20 to 25 p.u. range and the compaction factor is approximately 0.77. The sonic-magnetic resonance results compared favorably to the established density-magnetic resonance results and also to core data. In another offshore gas well from the North Sea, the porosity in the highly uncompacted sands is in the 35 to 40 p.u. range, and the compaction factor is around 1.85. Both SMR techniques were able to produce a very good porosity estimate comparable to that estimated from the: density-neutron logs.