On the metric dimension of incidence graphs of Mobius planes

被引:0
|
作者
Beke, Akos [1 ]
机构
[1] Eotvos Lorand Univ, Dept Math, Savaria Univ Ctr, H-4700 Karolyi Gaspar Ter, Szombathely, Hungary
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the metric dimension and optimal split-resolving sets of the point-circle incidence graph of a Mobius plane. We prove that the metric dimension of a Mobius plane of order q is 2q + O (log q), and that an optimal split-resolving set has cardinality between 5q-10 and 2.5q log q+ O(q). We also prove that a smallest blocking set of a Mobius plane of order q has at most 2q(1 + log(q + 1)) points.
引用
收藏
页码:59 / 73
页数:15
相关论文
共 50 条
  • [1] The metric dimension of the incidence graphs of projective and affine planes of small order
    Heger, Tamas
    Szilard, Peter
    Takats, Marcella
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 78 : 352 - 375
  • [2] On the metric dimension of incidence graphs
    Bailey, Robert F.
    DISCRETE MATHEMATICS, 2018, 341 (06) : 1613 - 1619
  • [3] On the metric dimension of Mobius ladders
    Ali, Murtaza
    Ali, Gohar
    Imran, Muhammad
    Baig, A. Q.
    Shafiq, Muhammad Kashif
    ARS COMBINATORIA, 2012, 105 : 403 - 410
  • [4] Metric Dimension of the Mobius Ladder
    Munir, Mobeen
    Nizami, Abdul Rauf
    Iqbal, Zaffar
    Saeed, Huma
    ARS COMBINATORIA, 2017, 135 : 249 - 256
  • [5] Metric dimension and metric independence number of incidence graphs of symmetric designs
    Tang, Lang
    Zhou, Shenglin
    Chen, Jing
    Zhang, Zhilin
    DISCRETE APPLIED MATHEMATICS, 2021, 291 : 43 - 50
  • [6] Metric dimension and edge metric dimension of windmill graphs
    Singh, Pradeep
    Sharma, Sahil
    Sharma, Sunny Kumar
    Bhat, Vijay Kumar
    AIMS MATHEMATICS, 2021, 6 (09): : 9138 - 9153
  • [7] Graphs with the edge metric dimension smaller than the metric dimension
    Knor, Martin
    Majstorovic, Snjezana
    Toshi, Aoden Teo Masa
    Skrekovski, Riste
    Yero, Ismael G.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 401
  • [8] ON THE METRIC DIMENSION AND FRACTIONAL METRIC DIMENSION OF THE HIERARCHICAL PRODUCT OF GRAPHS
    Feng, Min
    Wang, Kaishun
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) : 302 - 313
  • [9] On the metric dimension of affine planes, biaffine planes and generalized quadrangles
    Bartoli, Daniele
    Heger, Tamas
    Kiss, Gyorgy
    Takats, Marcella
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 72 : 226 - 248
  • [10] ASYMPTOTIC DIMENSION OF PLANES AND PLANAR GRAPHS
    Fujiwara, Koji
    Papasoglu, Panos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (12) : 8887 - 8901