Solutions of General Fractional-Order Differential Equations by Using the Spectral Tau Method

被引:9
|
作者
Srivastava, Hari Mohan [1 ,2 ,3 ,4 ]
Gusu, Daba Meshesha [5 ]
Mohammed, Pshtiwan Othman [6 ]
Wedajo, Gidisa [5 ]
Nonlaopon, Kamsing [7 ]
Hamed, Y. S. [8 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[4] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[5] Ambo Univ, Dept Math, Coll Nat & Computat Sci, POB 19, Ambo, Ethiopia
[6] Univ Sulaimani, Dept Math, Coll Educ, Sulaimani 46001, Kurdistan Regio, Iraq
[7] Khon Kaen Univ, Dept Math, Khon Kaen 40002, Thailand
[8] Taif Univ, Dept Math & Stat, Coll Sci, POB 11099, At Taif 21944, Saudi Arabia
关键词
fractional-order differential equations; Caputo fractional-order differential equations; Chebyshev polynomial; spectral Tau method; WAVELET OPERATIONAL MATRIX; NUMERICAL-SOLUTION; COLLOCATION METHOD; INTEGRATION; OPERATORS;
D O I
10.3390/fractalfract6010007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here, in this article, we investigate the solution of a general family of fractional-order differential equations by using the spectral Tau method in the sense of Liouville-Caputo type fractional derivatives with a linear functional argument. We use the Chebyshev polynomials of the second kind to develop a recurrence relation subjected to a certain initial condition. The behavior of the approximate series solutions are tabulated and plotted at different values of the fractional orders nu and alpha. The method provides an efficient convergent series solution form with easily computable coefficients. The obtained results show that the method is remarkably effective and convenient in finding solutions of fractional-order differential equations.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Spectral Tau method for solving general fractional order differential equations with linear functional argument
    Kamal R. Raslan
    Mohamed A. Abd El salam
    Khalid K. Ali
    Emad M. Mohamed
    [J]. Journal of the Egyptian Mathematical Society, 27 (1)
  • [2] A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations
    Mohammadi, Fakhrodin
    Cattani, Carlo
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 306 - 316
  • [3] Fundamental solutions of the general fractional-order diffusion equations
    Yang, Xiao-Jun
    Gao, Feng
    Ju, Yang
    Zhou, Hong-Wei
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9312 - 9320
  • [4] Oscillation Results for Solutions of Fractional-Order Differential Equations
    Alzabut, Jehad
    Agarwal, Ravi P.
    Grace, Said R.
    Jonnalagadda, Jagan M.
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [5] EXISTENCE OF SOLUTIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL-ORDER DERIVATIVE TERMS
    Sun, Ai
    Su, Youhui
    Yuan, Qingchun
    Li, Tongxiang
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 486 - 520
  • [7] Solutions of linear uncertain fractional-order delay differential equations
    Wang, Jian
    Zhu, Yuanguo
    [J]. SOFT COMPUTING, 2020, 24 (23) : 17875 - 17885
  • [8] Solutions of linear uncertain fractional-order delay differential equations
    Jian Wang
    Yuanguo Zhu
    [J]. Soft Computing, 2020, 24 : 17875 - 17885
  • [9] EXISTENCE OF LOCAL AND GLOBAL SOLUTIONS OF FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS
    Muslim, M.
    Conca, C.
    Agarwal, R. P.
    [J]. NONLINEAR OSCILLATIONS, 2011, 14 (01): : 77 - 85
  • [10] Properties of solutions for fractional-order linear system with differential equations
    Wang, Shuo
    Liu, Juan
    Zhang, Xindong
    [J]. AIMS MATHEMATICS, 2022, 7 (08): : 15704 - 15713